WEBINAR TECNICO N. 1/23

«LA FERROVIA,

UN SETTORE STRATEGICO

IN CONTINUA EVOLUZIONE»

SECONDA PARTE

16 FEBBRAIO 2023

Walter Serra

- LAUREA IN ECONOMIA AZIENDALE (SPEC. FINANZA AZIENDALE)
- FREQUENTA CORSI DI FORMAZIONE IN GESTIONE AZIENDALE -GESTIONE DELLE RISORSE
- MASTER INDUSTRIA 4.0 CON ANIE FORMAZIONE

ESPERIENZE PROFESSIONALI

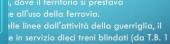
- DIRIGENTE E AMMINISTRATORE DELEGATO, CON DELEGHE PER LA GESTIONE E LO SVILUPPO DI AZIENDE MULTINAZIONALI A PROFILO INDUSTRIALE AERONAUTICO-DIFESA E FERROVIARIO.
- PARTECIPA A GRUPPI DI LAVORO E COMITATI TECNICI NAZIONALI E INTERNAZIONALI
- **GNG** E VOLONTARIO ANFI-ETS PER LA PROTEZIONE CIVILE

Piero Chiappori

- LAUREA IN INGEGNERIA (SPEC. MECCANICA)
- FREQUENTATO CORSI DI FORMAZIONE TECNICA / PROFESSIONALE E MANAGERIALE
- RESPONSABILE SERVICE PER FLOTTE FERROVIARIE

ESPERIENZE PROFESSIONALI

- DIRIGENTE DEL SETTORE FERROVIARIO PRESSO IL GRUPPO MULTINAZIONALE ALSTOM (GIA' FIAT FERROVIARIA)
- PARTECIPA A GRUPPI DI LAVORO E COMITATI TECNICI NAZIONALI E INTERNAZIONALI



lo ferroviarie AB40/41, automezzi otenti litto ta con la N

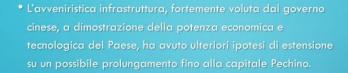
Durante il primo conflitto mondiale il Reggimento fornì una

(battaglione). L'unità divenne nell'ottobre 1910 il Reggimento

• Il 1º luglio 1895 venne costituita la Brigata Ferrovieri

pristino di 144 ponti e nel trasporto di Grandi Unità ersi settori del fronte.

Genio Ferrovieri.

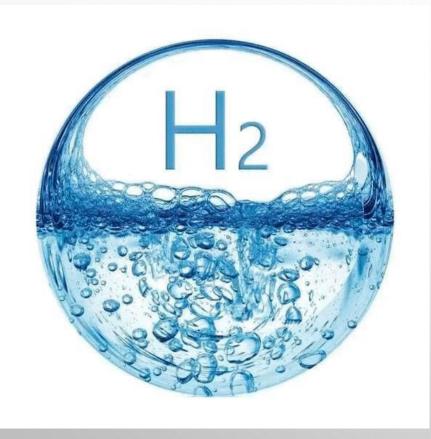


1859, quando alcuni reparti del 1° e 2° Reggimento Pontieri d'indipendenza (20 anni dopo la Napoli-Portici - 1839)

• Il 20 ottobre 1860, alla 6° Compagnia del 2° Reggimento Genio,

LA MOBILITÀ SOSTENIBILE GRAZIE ALLE NUOVE TECNOLOGIE E ALLE FONTI RINNOVABILI

INDICE

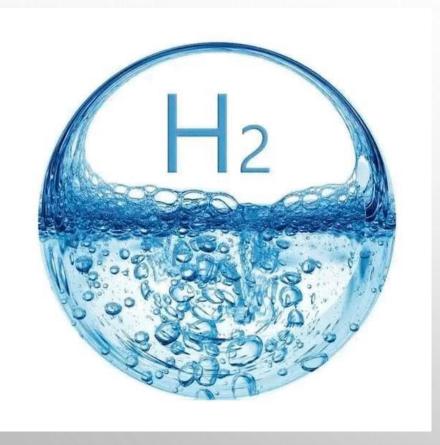

- 1. L'IDROGENO
- 2. STOCCAGGIO E TRASPORTO
- 3. CONVERSIONE DELL'ENERGIA (DA CHIMICA A MECCANICA) PER IL MOTO
- 4. CELLE A COMBUSTIBILE
- 5. L'INFRASTRUTTURA FERROVIARIA EUROPEA ED ITALIANA ED SUOI SVILUPPI
- 6. L'IDROGENO NEL TRASPORTO FERROVIARIO
- 7. I PRIMI 'PROGETTI PILOTA' DI TRENI A IDROGENO
 - IN EUROPA
 - IN ITALIA

L' IDROGENO

IDROGENO - COS'E'

L'idrogeno (H) è il primo elemento chimico della tavola periodica (o di Mendeleev). Ha numero atomico uguale a 1 ed è il più leggero degli elementi.

Si trova normalmente sotto forma di gas biatomico, avente formula H_2 – è incolore, inodore, insapore, ma <u>non é tossico</u>. È anche altamente infiammabile ed ha un elevato potere calorifico inferiore (10,4 MJ/m3 – quasi 3kWh/m3)


È anche l'elemento più abbondante presente nell' Universo, e costituisce il principale componente delle stelle, nelle quali è presente allo stato di plasma (gas ionizzato), rappresentando il combustibile delle reazioni termonucleari.

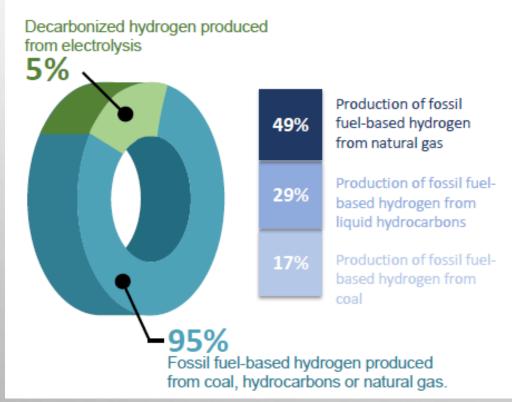
Sulla Terra è scarsamente presente allo stato libero e molecolare e deve, quindi, essere separato dagli altri elementi con i quali è combinato.

L' Idrogeno è molto volatile (circa 14 volte più leggero dell'aria), quindi si disperde nell'atmosfera molto velocemente

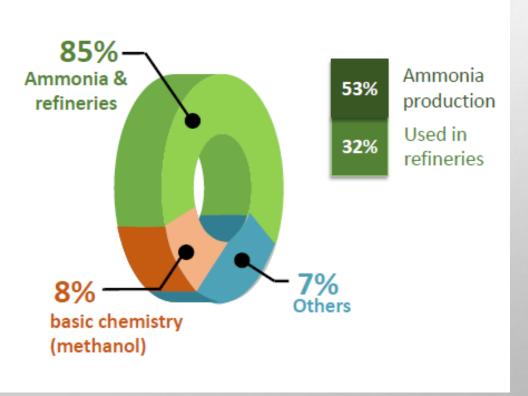
IDROGENO – COME SI PUÒ SEPARARE O PRODURRE

L'Idrogeno è presente in molti composti come il petrolio, il metano, il carbone, i composti organici e soprattutto l'acqua (H2O) che è una fonte praticamente inesauribile.

Esistono diverse tecniche per separare l'H₂ dagli altri elementi:


- Reforming si estrae l'H₂ dal petrolio o dal gas metano, si utilizza vapore acqueo alla temperatura di 800 °C in presenza di un catalizzatore, ottenendo idrogeno impuro, cioè miscelato con monossido di carbonio (CO), che è necessario eliminare per avere l'H₂ allo stato puro
- Gassificazione per estrarre l'H₂ dal carbone questo viene fatto reagire con vapore acqueo a 900 °C e poi nuovamente a 500 °C con un altro composto catalizzatore
- Elettrolisi ovvero scissione dell'acqua mediante l'utilizzo di energia elettrica. Per ottenere un metro cubo di idrogeno in forma gassosa sono necessari 4-5 kWh di energia elettrica
- Fotosintesi da microrganismi organici che producono idrogeno con l'aiuto dell'energia solare

IDROGENO - FONTI E DESTINAZIONI

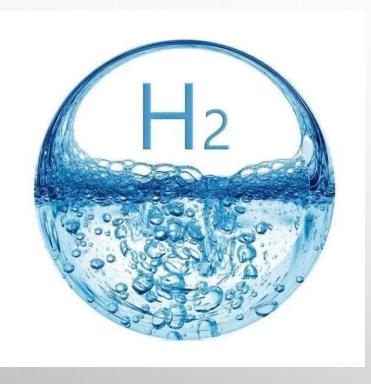

 Si produce principalmente separandolo da combustibili fossili, soprattutto dal gas naturale

Means of production of hydrogen

L'uso più commune dell'Idrogeno è per la produzione di Ammoniaca (NH3) e per raffinare altri idrocarburi

Typical uses of hydrogen

IDROGENO - ASPETTI POSITIVI



- E' l'elemento più abbondante in natura, rappresenta, quindi, una fonte praticamente inesauribile.
- Dal momento che in natura non si trova allo stato puro (H₂), per utilizzarlo come combustibile è necessario prima separarlo dagli altri elementi fornendo energia
 - Se viene 'separato' utilizzando energia proveniente da fonti rinnovabili (Idroelettrica, Eolica, Solare, ...) tramite elettrolisi i sottoprodotti della generazione di H₂ sono acqua e calore → non genera scorie (così come anche se generato tramite fotosintesi)
- L' H₂ è altamente infiammabile, ma <u>non é tossico</u> (sostanzialmente non inquina)
- Essendo l' H₂ molto più leggero dell'aria, si disperde negli strati alti dell'atmosfera molto velocemente (quindi non è pericoloso in caso di perdite)

IDROGENO - ASPETTI NEGATIVI

- E' molto sensibile all'innesco (15 volte più sensibile del metano). Per innescare la combustione dell' Idrogeno in caso di una perdita è sufficiente l'elettricità elettrostatica (2 stoffe sfregate una sull'altra!)
- L'innesco avviene rapidamente anche se l' H₂ entra in contatto con particelle di polveri
- La fiamma prodotta dalla combustione dell' Idrogeno è incolore (alla luce del giorno) grazie all'assenza di particelle carboniose
- L'atomo di Idrogeno è il più piccolo esistente ed è il più leggero dei gas con anche la più bassa viscosità a temperatura ambiente; ciò significa che le perdite sono molto difficili da contenere
- L'attacco o l'infragilimento da Idrogeno possono colpire l'integrità di molti materiali

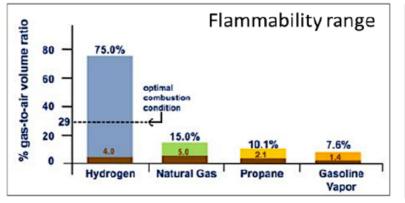
IDROGENO – CONFRONTO CON ALTRI COMBUSTIBILI

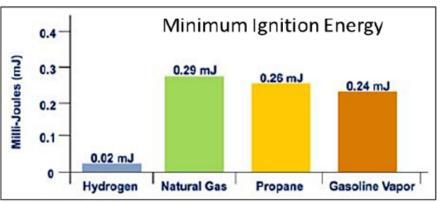
Hydrogen compared to other fuels

	Hydrogen H2	Natural gas CH4	Propane C3H8	Gasoline (vapor)
Buoyancy relative to air	14 x Lighter	2 x Lighter	1.16 x heavier	3.75 x heavier
Flammability range: % gas-to-air volume ratio	4 to 75 %	5 to 15 %	2.1 to 9.5 %	1,4 to 7.6 %
Minimum Ignition Energy	0.02 mJ	0.29 mJ	0.26 mJ	0.24 mJ
Laminar combustion velocity	3.5 m/s	0.45 m/s	0.32 m/s	

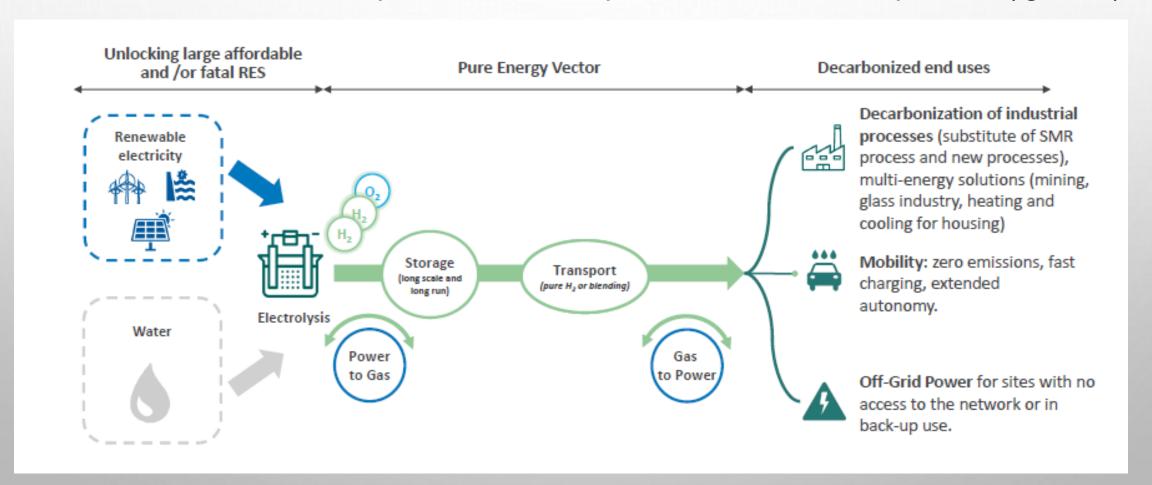
H2 will typically rise and disperse rapidly

has a large flammable range of 4 to 75% in air



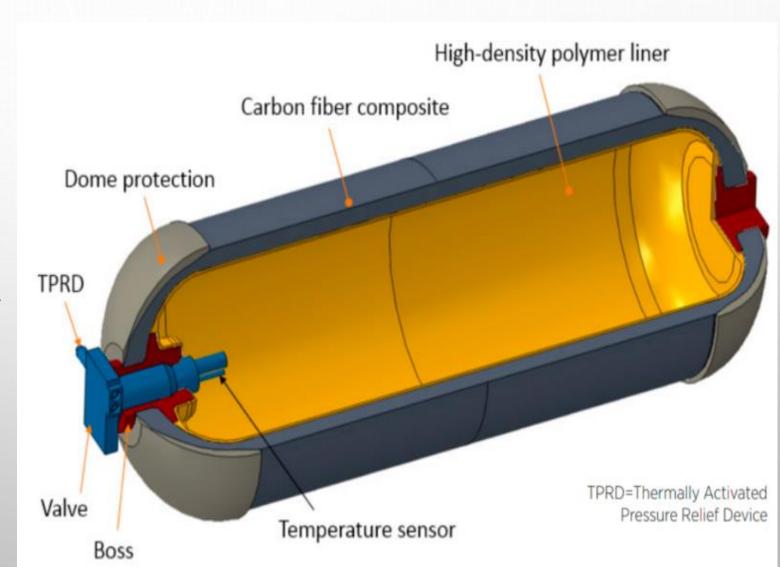

requires a small amount of energy for ignition

Is more reactive than CH4, leads to higher overpressure



IDROGENO – ELEMENTO CHIAVE PER LA DECARBONIZZAZIONE

Il ciclo dell' Idrogeno, dalla sua produzione (o separazione) al suo utilizzo come combustibile, può essere completamente eco-compatibile ('green')

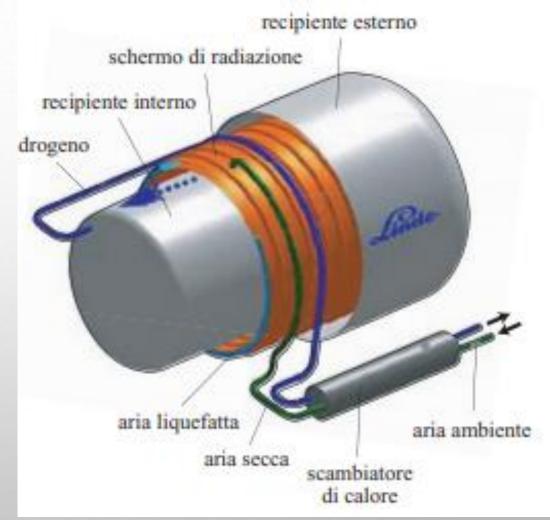

STOCCAGGIO 02 **E TRASPORTO**

STOCCAGGIO E TRASPORTO – SOTTO FORMA GASSOSA

La forma di stoccaggio più comune utilizza serbatoi compositi pressurizzati, costituiti da tre strati:

- •uno interno polimerico
- •uno intermedio in fibra di carbonio capace di sopportare elevate trazioni
- •uno più esterno in acciaio in grado di proteggere il sistema da danni meccanici e corrosivi
- •possono sorgere problemi di sicurezza durante il rifornimento a pressioni di 700 bar o superiori, attualmente sugli automezzi si utilizzano serbatoi da 350 bar.
- •per le applicazioni mobili il gas-storage compresso può risultare ingombrante, mentre nelle più capienti stazioni di servizio lo stoccaggio di gas compresso è una soluzione a basso costo.

STOCCAGGIO E TRASPORTO – SOTTO FORMA LIQUIDA (CON TECNICHE CRIOGENICHE)



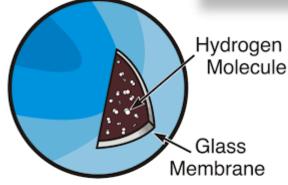
Lo **stoccaggio criogenico** è una tecnologia che necessita di temperature al di sotto dei - 235 °C (punto di ebollizione dell'H2) per liquefare l'idrogeno.

I gas devono essere stoccati in serbatoi costituiti da un doppio rivestimento, fra i due rivestimenti viene fatto il vuoto o viene immesso un altro isolante (es: aria liquefatta) per impedire il passaggio di calore per conduzione tra l'interno e l'esterno.

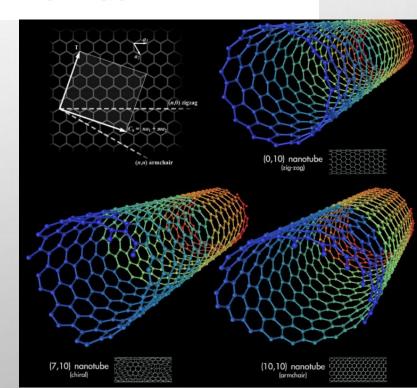
La progettazione mira a ridurre al minimo la superficie di contatto del liquido per diminuire lo scambio di calore con l'esterno. I serbatoi pressurizzati, quindi, sono generalmente sferici o cilindri.

Le basse temperature e i problemi di conduzione di calore rendono questa tecnologia adatta per gli impianti fissi, ma non per i mezzi stradali o ferroviari.

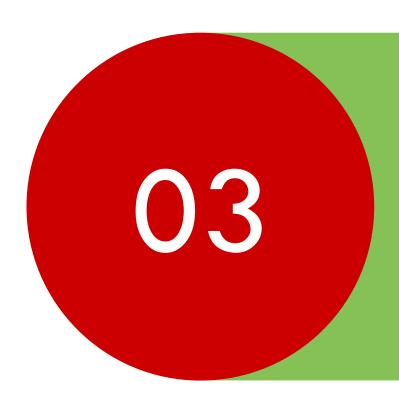
STOCCAGGIO E TRASPORTO – SOTTO FORMA SOLIDA


Le micro-sfere di cristallo: una nuova tecnologia?

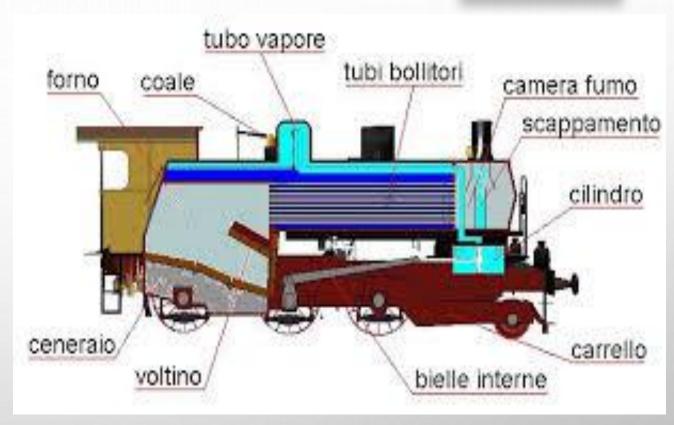
sfrutta la permeabilità all'H2 del vetro ad alte temperature. L'intrappolamento dell'idrogeno avviene riscaldando un letto di micro-sfere vuote in atmosfera di idrogeno. Il gas diffonde attraverso il sottile guscio di vetro a temperature che vanno da 100 a 400 °C, finché la pressione all'interno delle sfere eguaglia quella esterna, quindi si opera un rapido raffreddamento e l'idrogeno rimane intrappolato.


Gli Idruri metallici: L'H2 penetra nei siti interstiziali del reticolo cristallino del metallo a pressioni tra 30 e 60 bar. Il rilascio avviene ad alte temperature e inizialmente ad alta pressione, che diminuisce man mano che l'idruro si impoverisce di idrogeno.

Nano tubi e nano fibre in carbonio: queste permettono di immagazzinare idrogeno sfruttando l'affinità tra gli atomi di carbonio ed idrogeno, il processo di immagazzinamento è simile a quello per gli idruri. Le molecole gassose vengono assorbite sulla superficie dei grani di carbonio, rimanendo intrappolate nelle cavità del materiale e vengono rilasciate solo all'incremento di temperatura. A parità di volume occupato la quantità di idrogeno assorbito dalle nano strutture è maggiore rispetto a quella per mezzo di una sola compressione (fino al 70% in peso).



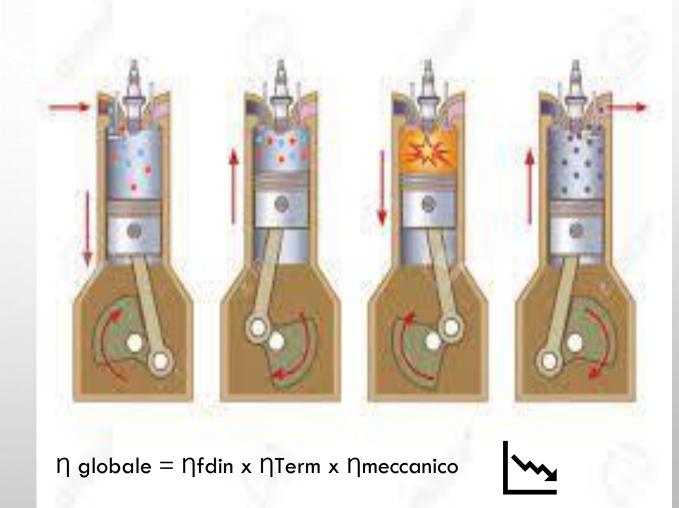
hydrogen.energy.gov



CONVERSIONE DELL'ENERGIA PER IL MOTO NEI TRASPORTI

CONFRONTO FRA MOTORI E SISTEMI A 'FUEL CELL'

- Caldaia a vapore ('tubi di fumo') + cilindro
 - Combustibile carbone
 - Comburente ossigeno (aria)
 - Combustione e sviluppo calore (reazione chimica esotermica)
 - Passaggio del calore dai fumi della combustione all'acqua circostante
 - Passaggio di stato (liquido-gassoso) dell'acqua in vapore
 - Espansione del vapore in un cilindro che fa muovere un pistone
 - Trasformazione del moto rettilineo alternativo del pistone in moto rotatorio continuo con manovellismo (biellamanovella) sull'albero motore/ruote



CONFRONTO FRA MOTORI E SISTEMI A 'FUEL CELL'

- Motore a combustione interna
 - Combustibile benzina, gasolio, metano,
 GPL (o anche ad H2)
 - Comburente ossigeno (aria)
 - Innesco candela (o autoaccensione per Diesel)
 - Combustione e sviluppo calore (reazione chimica esotermica)
 - Espansione gas e raccolta di energia meccanica con manovellismo (biellamanovella) sull'albero motore

I motori a combustion interna funzionanti ad Idrogeno sono chiamati HICE (Hydrogen Internal Combustion Engine) e funzionano sullo stesso principio dei motori a GPL o a Metano

CONFRONTO FRA I MOTORI E SISTEMI A 'FUEL CELL'

- Celle a combustibile + Convertitore DC/DC + Inverter di trazione + Motore elettrico
 - Combustibile H2
 - Reagente ossigeno (aria)
 - Elettrolita (liquido, polimerico, ...) ambiente per la reazione chimica
 - Produzione di corrente elettrica DC con sviluppo di calore (reazione chimica esotermica)
 - Conversione DC/DC ad elevata tensione e Inverter per trasformazione DC/AC
 - Campo magnetico rotante e raccolta energia meccanica sull'albero motore

 Π globale = Π fc x Π DC/DC x Π Inv x Π meccanico

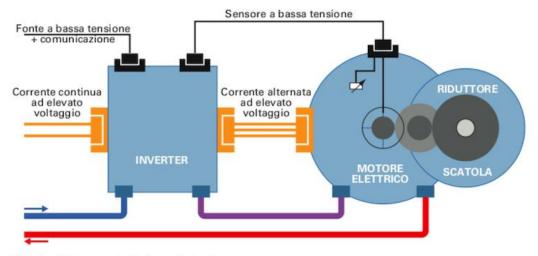
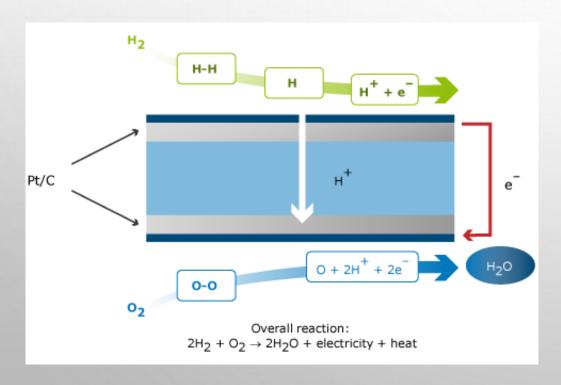
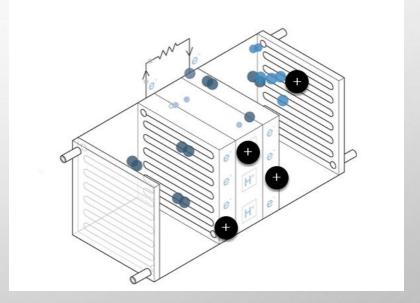


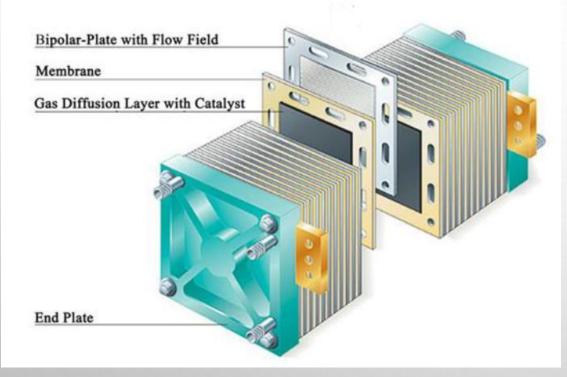
Fig. 1 - Sistema elettrico e interfacce.





CELLE A COMBUSTIBILE - PRINCIPIO DI FUNZIONAMENTO

- Le celle a combustibile sono un reattore chimico che converte l'energia chimica in elettricità e calore, senza nessuna combustione ed in assenza di parti in movimento
- Contrariamente al processo di combustione, nel quale l'energia chimica è convertita in calore, le celle a combustibile producono elettricità come output primario della reazione



Fuel Cells

PILA DI CELLE A COMBUSTIBILE – PRINCIPIO DI FUNZIONAMENTO

 Una pila di celle a combustibile (stack) consiste nell'insieme di diverse celle. Consente di ottenere tensioni maggiori [connettendo elettricamente in serie più celle (0,7V circa per singola cella), si possono ottenere 70 V per uno stack di 100 celle]

- Diversi tipi di celle a combustibile possono differire fra loro per l'elettrolita usato (un liquido, un polimero o membrane ceramiche) esistono diverse tecnologie per la costruzione di celle a combustibile
- La tecnologia più adatta per la trazione è la **PEM** (**P**olymer **E**lectrolyte **M**embrane) che offre il miglior compromesso fra 'Potenza' (power density), durata, temperature di funzionamento (50-90 °C) ed ingombri/pesi

CELLE A COMBUSTIBILE - PRINCIPALI TECNOLOGIE E INGOMBRI

PEMFC - 140 kW (484x555x195) mm

Polymer Electrolyte Membrane Fuel Cells

[50 - 90 °C]

PAFC - 200 kW

Phosphoric Acid Fuel Cells

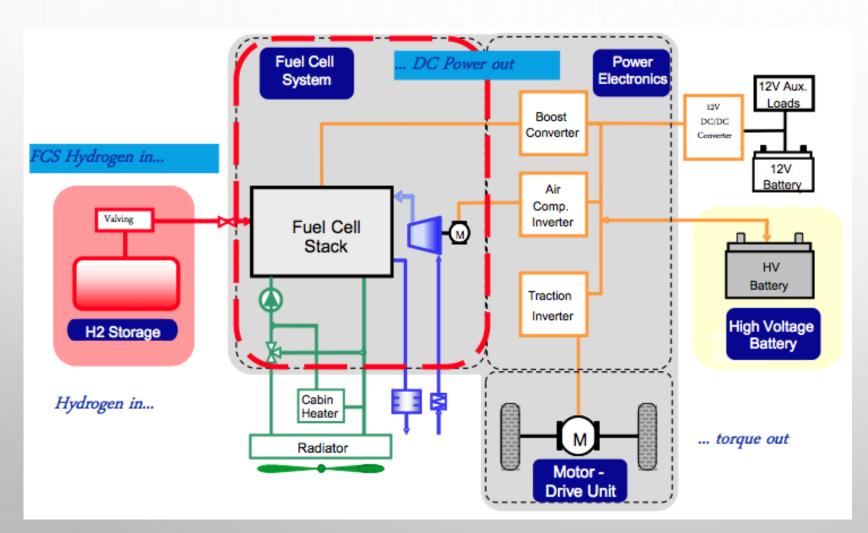
[150 - 200 °C]

MCFC - 400 kW

Molten Carbonate Fuel
Cells

[600 - 700 °C]

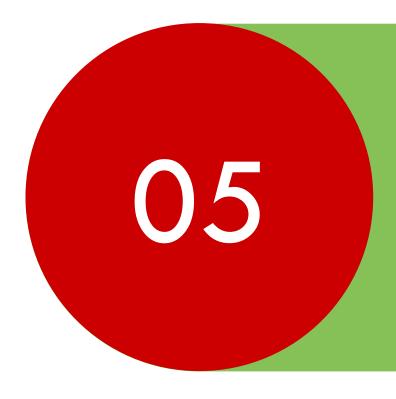
SOFC - 5 kW



AFC - 5 kW Solid Oxide Fuel Cells [600 - 800 °C]

Alkaline Fuel Cells [100 °C] 28

FUEL CELL SYSTEM — COMPONENTI PRINCIPALI (PEMFC)



$$2H_2 + O_2 \rightarrow 2H_2O$$

$$2x(2g) H_2 + 32g O_2 \rightarrow 2x(18g) H_2 O_2$$

$$1 \text{kg H}_2 + 8 \text{kg O}_2 \rightarrow 9 \text{kg H}_2 \text{O}$$

L'INFRASTRUTTURA FERROVIARIA EUROPEA ED ITALIANA ED I SUOI SVILUPPI

STRATEGIA EUROPEA PER UNA MOBILITA' SOSTENIBILE

Emissioni di gas serra per modalità di trasporto nell'UE-28

Fonte Eurostat

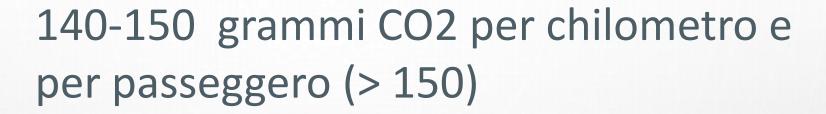
COMUNICAZIONE DELLA COMMISSIONE EUROPEA STATEGIA PER UNA MOBILITÀ INTELLIGENTE E SOSTENIBILE

AL 2030

- almeno 30 milioni di veicoli a emissioni zero saranno in circolazione sulle strade europee;
- 100 città europee saranno a impatto climatico zero;
- il traffico ferroviario ad alta velocità raddoppierà;
- i viaggi collettivi programmati inferiori a 500 km dovrebbero essere neutri in termini di emissioni di carbonio all'interno dell'UE;
- la mobilità automatizzata sarà diffusa su larga scala;
- saranno pronte per il mercato navi a emissioni zero.

AL 2035

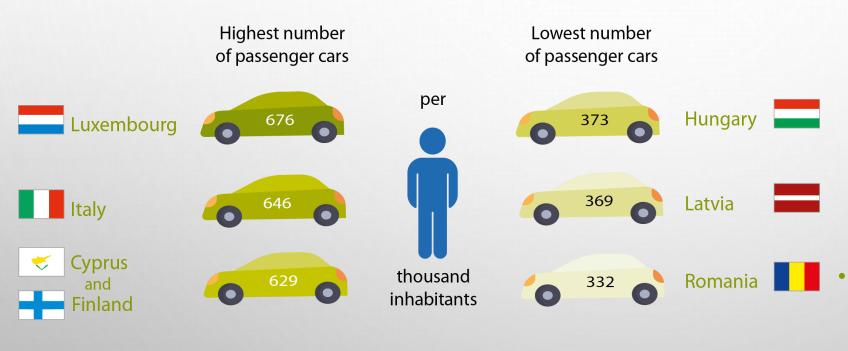
- saranno pronti per il mercato aeromobili di grandi dimensioni a emissioni zero
- Tutti i Veicoli di nuova immatricolazione a 0 emissioni


AL 2050

- quasi tutte le automobili, i furgoni, gli autobus e i veicoli pesanti nuovi saranno a emissioni zero;
- il traffico merci su rotaia raddoppierà;
- il traffico ferroviario ad alta velocità triplicherà;
- la rete trans-europea dei trasporti (TEN-T) multimodale, attrezzata per trasporti sostenibili e intelligenti con connettività ad alta velocità, sarà operativa per la rete globale

IMPATTO AMBIENTALE DEI DIVERSI MEZZI DI TRASPORTO

90-100 grammi CO2 per chilometro e per passeggero (< 2 media EU)



4-5 grammi CO2 per chilometro e per passeggero (circa 250)

UTILIZZO DELL'AUTO IN EUROPA PER IL TRASPORTO

EU Member States with the highest and lowest number of passenger cars per thousand inhabitants, 2018

- Lo sviluppo dei trasporti ferroviari costituisce la migliore alternativa di trasporto per ridurre la produzione di CO2 (e, quindi, l'effetto serra) attraverso:
 - L'estensione delle linee (soprattutto di quelle elettrificate)
 - la diminuzione delle emissioni del materiale rotabile circolante sulle linee non elettrificate
- Questo vale, a maggior ragione per l'Italia, che è fra i Paesi europei con il più elevato numero di auto circolanti in rapporto alla popolazione

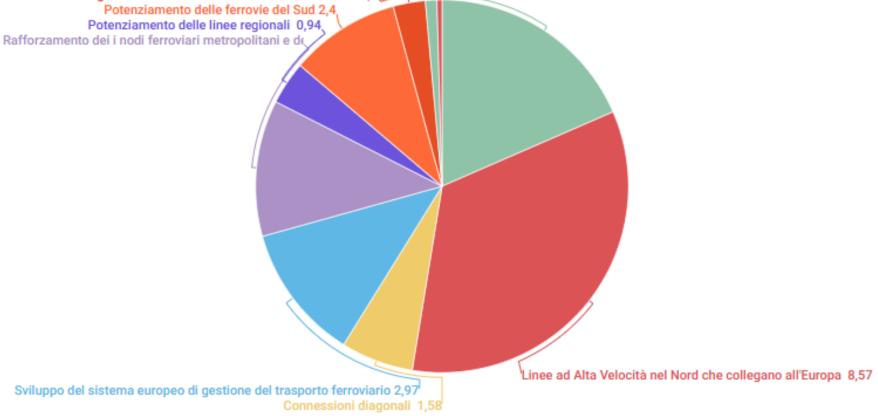
INVESTIMENTI PREVISTI NEL PNRR – SECONDO 3 DIRETTRICI

Sviluppo Infrastrutture ferroviarie Alta Velocità e linee Regionali

25,4 miliardi

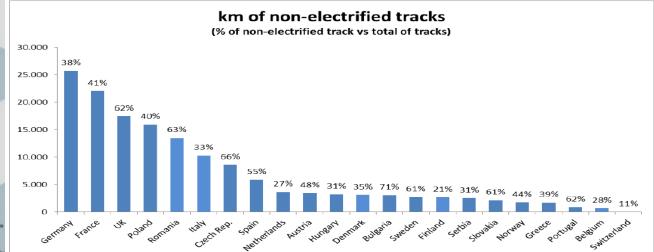
Trasporto Rapido di Massa (TRM) nelle aree urbane (216 km di nuove linee tranviarie, metropolitane, filobus)

3,6 miliardi


Acquisto di nuovo materiale rotabile (treni) e bus

200 milioni per nuovi treni 300 milioni per bus elettrici 34

GLI INVESTIMENTI SULLA RETE FERROVIARIA DEL PNRR


- Quasi tutti i fondi Pnrr per le infrastrutture andranno al trasporto ferroviario
- Dei 25,4 miliardi versati da Bruxelles gli investimenti sulla rete ferroviaria costituiranno la maggior parte (24,7 mld), mentre circa 650 milioni andranno ad intermodalità e logistica integrata.
- Solo il 6% del traffico passeggeri e l'11% di quello merci avviene su rotaia in Italia. Il passaggio «dalla gomma al ferro» consentirà di diminuire di 2,3 milioni di tonnellate all'anno le emissioni di Co2

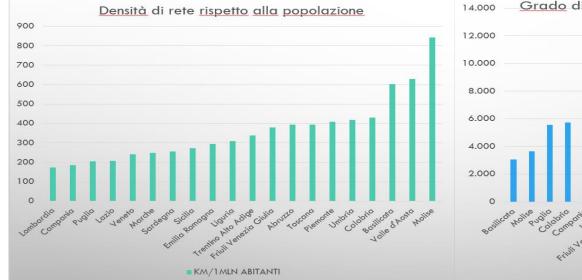
ESTENSIONE DELLE LINEE FERROVIARIE IN EUROPA

30. 25.
20.
15. 10.
5.
5
Eller

Stato \$	Lunghezza (km)	Anno ÷	Km/ 1.000 km ²		
Stati Uniti	226.612	2005	24,2 ^[1]		
Unione europea	209.895	2007	48,5		
Russia	84.158	2007	4,9		
Cina	79.687	2008	8,3		
I ◆I Canada	78.042	2010	5,7		
India	63.327	2007	19,3		

ESTENSIONE DELLE LINEE FERROVIARIE IN ITALIA

LINEE FERROVIARIE IN ESERCIZIO (1)	16.832
CLASSIFICAZIONE	
Linee fondamentali	6.486km
Linee complementari	9.396 km
Linee di nodo	950 km
TIPOLOGIA	
Linee a doppio binario	7.732 km
Linee a semplice binario	9.100 km
ALIMENTAZIONE	
Linee elettrificate	12.160 km
- Linee a doppio binario	7.655 km
- Linee a semplice binario	4.505 km
Linee non elettrificate (diesel)	4.672 km


- L'ATTUALE RETE FERROVIARIA ITALIANA È COSTITUITA DA 16.832 CHILOMETRI DI LINEE FERRATE
- CIRCA IL **28%** DELLA RETE FERROVIARIA NAZIONALE NON È ELETTRIFICATO. SI TRATTA, PIÙ PRECISAMENTE, DI **4.762** CHILOMETRI (QUESTA % È DESTINATA A RIDURSI, NELL'AMBITO DEL PNRR FINANZIATO CON I FONDI EUROPEI)
- TUTTAVIA L'ELETTRIFICAZIONE DELLE LINEE HA UN COSTO ELEVATO, SI STIMA SIA DELL'ORDINE DI GRANDEZZA DI 1 M€ PER CHILOMETRO, QUINDI LA PRESENZA DI LINEE NON ELETTRIFICATE RIMANE, E RIMARRÀ IN FUTURO, SIGNIFICATIVA

DIFFUSIONE DELLE LINEE NON ELETTRIFICATE PER REGIONE

	Chilometri di linee Diesel	Percentual
Sardegna	430	100%
Val d'Aosta	81	100%
Molise	205	77,3%
Calabria	363	42,6%
Sicilia	578	41,9%
Abruzzo	206	39,3%
Basilicata	136	39,1%
Veneto	406	34,1%
Trentino Alto Adige	67	34%
Marche	118	30,5%
Piemonte	552	29%
Puglia	235	27,9%
Campania	240	21,9%
Toscana	503	18,8%
Friuli Venezia Giulia	84	17,7%
Lombardia	283	16,3%
Lazio	103	8,4%
Emilia Romagna	85	6,5%
Umbria	21	5,5%
Liguria	17	3,4%

- Attualmente i treni passeggeri diesel che complessivamente circolano sulla rete ferroviaria di RFI sono circa 1250 al giorno, poco meno di 20, invece, i convogli merci.
- l'elevato costo della elettrificazione delle linee ferroviarie (± 1M€/km) non sempre rende conveniente l'investimento
- Si ha un buon 'ritorno dell'investimento' solo in presenza di un buon fattore di utilizzo dei mezzi circolanti per il trasporto pubblico locale (TPL)

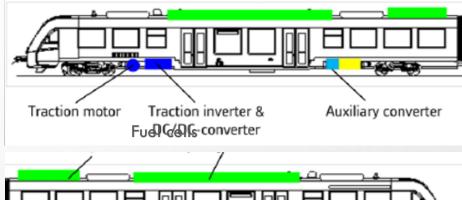
CENNI STORICI – L'800 È STATO IL SECOLO DEL CARBONE

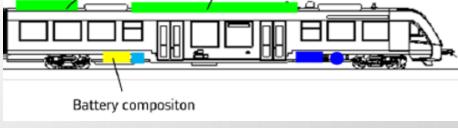
Agli albori dell'era ferroviaria (XIX° Secolo) i treni erano 'a vapore' ed il combustibile usato era solo il carbone

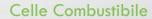
CENNI STORICI – IL '900 È STATO IL SECOLO DELLA ELETTRIFICAZIONE E DEL DIESEL SU LINEE NON ELETTRIFICATE

Nel secolo scorso si è vissuto il passaggio dai combustibili solidi (appunto il carbone) a quelli liquidi (Diesel) Oggi, in seguito alla elettrificazione di tutte le linee ferroviarie principali, gli operatori ferroviari usano ancora la trazione Diesel per il traffico solo sulle linee non elettrificate

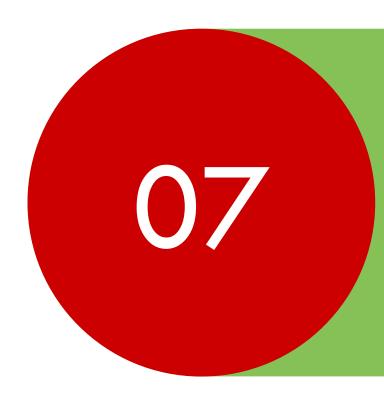
SVILUPPI FUTURI – SU LINEE A BASSO GRADO DI UTILIZZO


- L' Elettrificazione è conveniente solo su linee ad 'alto grado di utilizzo' (in Italia poco più del 70% del totale)
- Sostituzione della trazione Diesel con tecnologie a minore impatto ambientale (emissione di CO₂ e di altre sostanze inquinanti come CO, NO_X, particolato, ...elevato livello di rumore, prodotto dai motori endotermici)
- La ecocompatibilità dell'Idrogeno, unita alla sua disponibilità ed elevata densità di energia (~ 28.700Kcal/Kg), ne fanno la soluzione ideale per il futuro delle linee non elettrificate.


TRAZIONE FERROVIARIA SULLE LINEE NON ELETTRIFICATE (NUOVI MATERIALI ROTABILI)



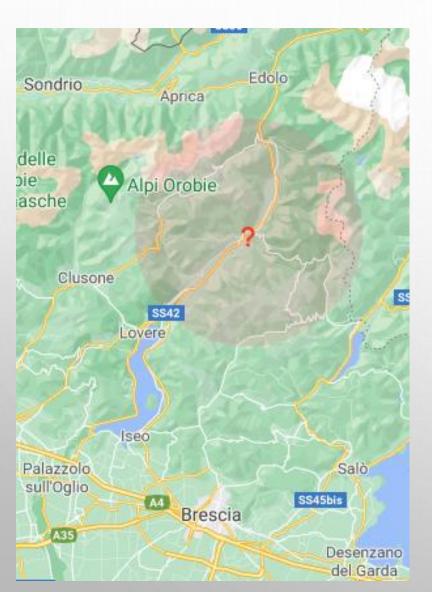
Composition	4 cars + 1 power car
Trainset Length	96,7 mt.
Weight max for axle, considering 280 pers/m2	≤ 18 T/axle
Signalling	SCMT + SSC
Lightening	LED
Bicycle rack	8
Toilet	1 PRM
	1 standard
Max traction power in H2 mode	1170 kW
Nb of doors per side	4
Max speed	140 km/h
Doors freewitdh/height	1300 x 1900 mm
Motorized bogie	2
Trailer Bogie	4
Autonomy	600 km
Seated passenger	260
Standing places, considering 4 pers/m2	256
Total passengers	516



I PRIMI 'PROGETTI PILOTA' DI TRENI AD IDROGENO

I PROGETTI DI TRENI AD IDROGENO OPERANTI IN EUROPA

Il successo operativo del treno a celle di combustibile di Alstom è iniziato nel settembre 2018, quando due veicoli pre-serie hanno iniziato il servizio regolare passeggeri in Bassa Sassonia, in Germania.


Dopo un anno e mezzo di test e oltre 180.000 chilometri percorsi, ai veicoli pre-serie sono seguiti i primi 14 treni treni di serie. Successivamente altri treni sono stati ordinati dai 'Lander' ed oggi Alstom ha già venduto 41 di questi treni a idrogeno in Germania.

Dopo il successo del trasporto passeggeri in Germania, il treno a idrogeno è stato messo alla prova in Austria, trasportando i viaggiatori su un territorio molto più impegnativo dal punto di vista geografico. Anche altri paesi come il Regno Unito, i Paesi Bassi, la Francia, l' Austria, la Spagna stanno prevedendo di ordinare treni basati su questa tecnologia. In Italia il primo ordine per treni ad idrogeno risale al 2021 e l'esercizio commerciale con questi treni è previsto a partire dal 2024.

I passeggeri potranno viaggiare su un treno a bassa rumorosità con una velocità massima di 140 km/h e zero emissioni.

IL PRIMO PROGETTO DI TRENI AD IDROGENO IN ITALIA

La Valcamonica e il Sebino saranno la prima «Hydrogen Valley» italiana

Ci parlano del progetto H2iseO Andrea Gibelli (Presidente di FNM - Ferrovie Nord Milano) e Marco Piuri (AD di Trenord)

IL PRIMO PROGETTO DI TRENI AD IDROGENO IN ITALIA

il progetto «H2iseO», prevede l'acquisto di 14 nuovi treni alimentati a idrogeno, che entreranno in servizio dal 2024 sulla linea non elettrificata <u>Brescia-Iseo-Edolo</u>

i nuovi treni saranno consegnati in sostituzione degli attuali 14 treni circolanti a motorizzazione diesel.

prima arriveranno 6 treni, che saranno tutti consegnati nel 2024, e successivamente altri 8 treni.

Gli attuali 'vecchi' convogli diesel, che saranno gradualmente tutti sostituiti, sono in servizio dai primi anni '90.

I treni sono costruiti da Alstom <u>interamente in Italia</u>, presso il sito industriale di **Savigliano (CN)**, mentre gli apparati per il segnalamento 'on board' saranno prodotti presso il sito industriale di **Bologna**

GRAZIE A TUTTI PER L'ATTENZIONE

