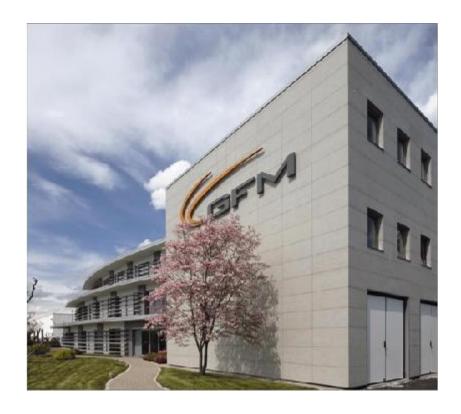
ATC: dall'idea alla Produzione di Serie

Francesco Stortiero


Technical Director

francesco.stortiero@atc-additive.com

francesco.stortiero@gfmspa.com

ATC Origine di ATC e il Ruolo di GFM

Sito Direzionale – Mapello (BG), Italy

Sito Produttivo- Nembro (BG), Italy

ATC Origini e il ruolo di GFM Role: Cosa Facciamo 1/3

MACHINING – BUILD TO PRINT

PARTI DI COMPRESSORI (Dischi, Anelli, Guardie Olio, Cuscinetti, Diffusori, Elementi di Smorzamento)
PARTI TURBINA (Anelli di Tenuta, Dischi, Piatti di Copertura, Anelli Guida)

ATC Origini e il ruolo di GFM Role: Cosa Facciamo 2/3

STAMPAGGIO, TAGLIO, FORMATURA LAMIERA – BUILD TO PRINT

LOCKING AND SEAL PLATES, SEAL STRIPS

ATC Origini e il ruolo di GFM Role: Cosa Facciamo 3/3

MACHINING + ASSEMBLY AERODERIVATIVE GAS TURBINE

ASSEMBLY OF COMPLETE ROTOR

ATC: Esigenze & Opportunità

Esigenze

Opportunità

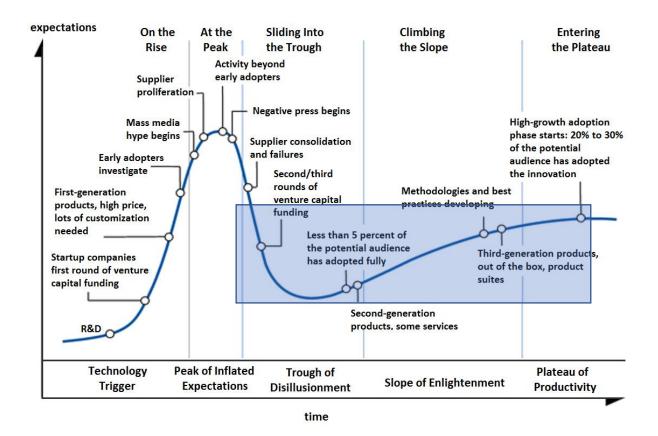
Introdurre nuove tecnologie di produzione

Supportare I clienti nello sviluppo di nuovi prodotti

Promozione della tecnologia Additiva DMG Espansione del Mercato delle Macchine Additive

Valutazione delle tecnologie additive per lo sviluppo di nuovi prodotti Produzione di Parti di ricambio per ridurre il Time to Market

PARTNERED BY



PARTNERED BY

ATC: Ruolo & Competenze

Riduce il Gap tra l'Idea e la Produzione di Serie

attraverso la **Consulenza** e la **Formazione** per garantire la massima diffusione della Tecnologia Additiva

ATC: Tecnologia&Materiali

Lasertec 65 3D Hybrid	Lasertec 30 SLM (2)	DMU 50
LAGERTEC 65 NO.		COAUSS COAUSS

Tecnologia	Ibrida: Additiva + Sottrattiva	Tecnologia a Letto di Polvere	Fresatura a 5 assi
Volume di Lavoro	Diametro 500mm x 350 mm	300mm x 300mm x 300mm	Diametro 450mm x 300mm
Materiali Utilizzabili	Tutte le Leghe Saldabili	Acciai/Alluminio/Titanio/Superleghe	Materiali Metallici/Polimerici
Materiali ATC	AISI 316L	AISI 316L	
	Maraging 300	Inconel 718 (Hastelloy x)	
	Hastelloy X	AlSi10Mg	

ATC: Laboratorio Metallografico

Preparazione Provini

			A A	Distance 500
Technology	Taglio e Lucidatura Provini	Microscopio Ottico	Microdurezza	Macchina Prova Materiali
Capability	Fino a 150mm	25X -200X	ASTM E-387, EN ISO 6507, EN ISO 4545	100KN
Materials	Qualsiasi	Qualsiasi	Metallici	Materiali Metallici & Polimeri
Software	N/A	HD Camera + Imaging software	Ricostruzione Automatica del profile di Stress	
Samples	Qualsiasi	Qualsiasi	Qualsiasi	

Osservazione Ottica

Prove Meccaniche

Microdurezza

ATC: Attività&Servizi

CO-ENGINEERING

Studio di Fattibilità

STUDIO DI FATTIBILITA' E PROTOTIPAZIONE

ANALISI PRE-COMPETITIVA

Sviluppo / Ottimizzazione e Qualifica di Processo

SVILUPPO E OTTIMIZZAZIONE DI PROCESSO

QUALIFICA DI PROCESSO

Formazione/Consulenza

FORMAZIONE

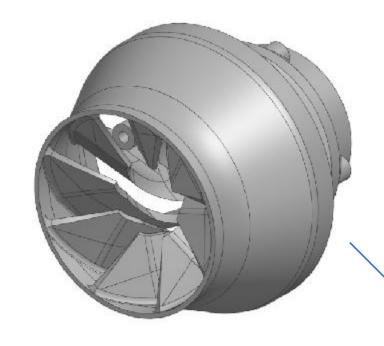
ATC: Studio di Fattibilità

CO-ENGINEERING

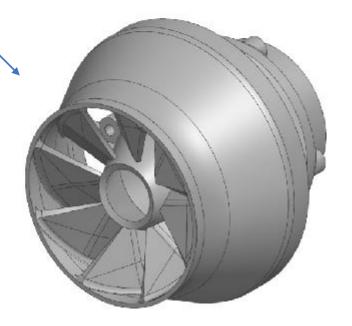
- Consulenza Tecnica per lo Sviluppo di nuove geometrie
- Supporto per la modifica di geometrie e componenti
- Selezione Materiali e Processi

STUDIO DI FATTIBILITA' E PROTOTIPAZIONE

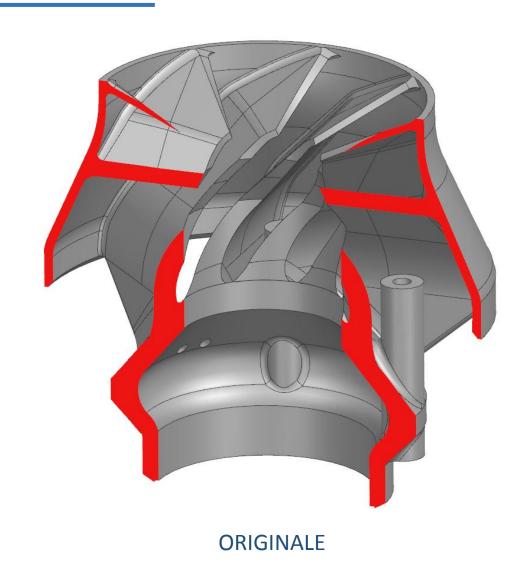
- Analisi della fattibilità del componente
- Realizzazione di Prototipi
- Verifica dei Requisiti e delle Caratteristiche Tecniche

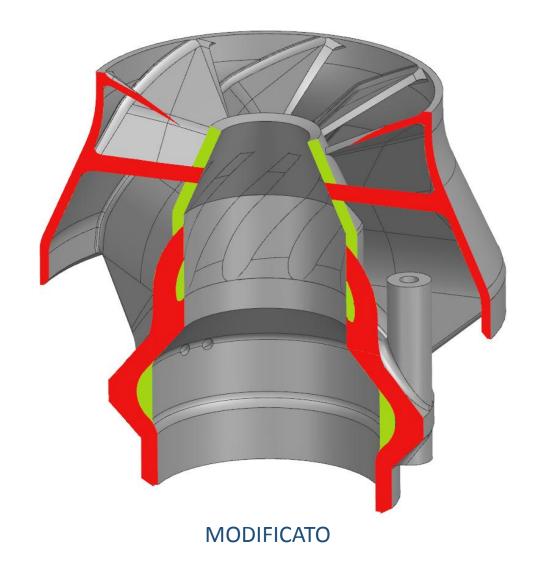

ANALISI PRE-COMPETITIVA

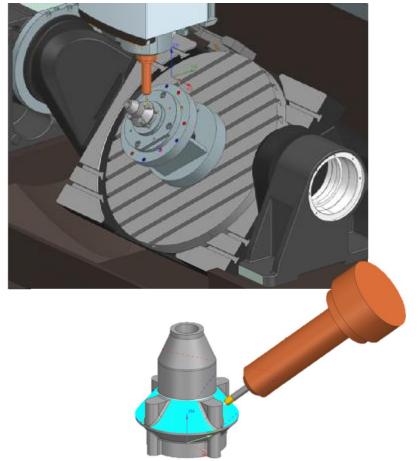
Analisi dei costi della sostenibilità del progetto e dell' idea

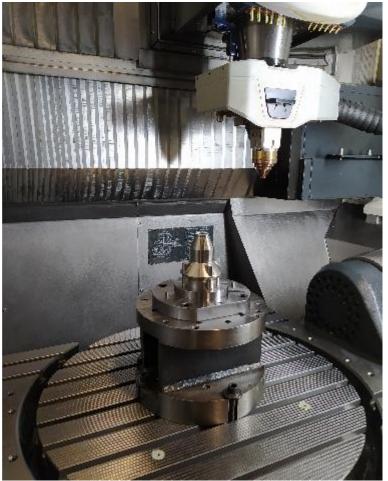

ATC: Studio di Fattibilità - Caso Studio -

MODIFICA DELLA GEOMETRIA
SENZA ALTERARE LA
FUNZIONALITA' DEL
COMPONENTE

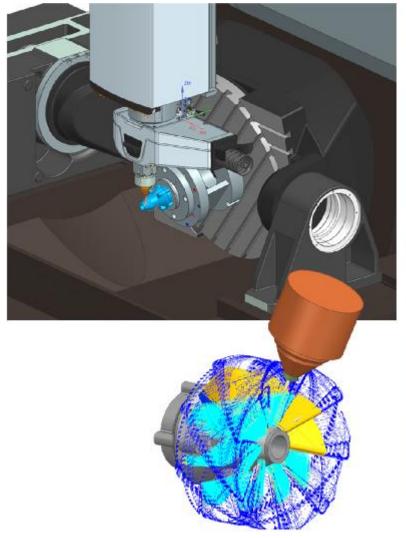

OBIETTIVI

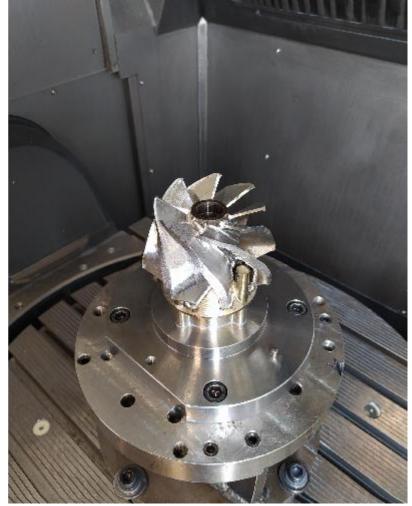

- Garantire la fattibilità
- Minimizzare i tempi di stampa


ATC: Studio di Fattibilità - Caso Studio – Hybrid Manufacturing

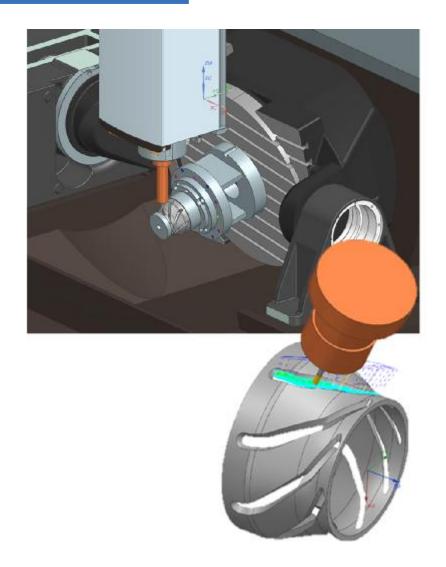


ATC: Studio di Fattibilità - Realizzazione Base

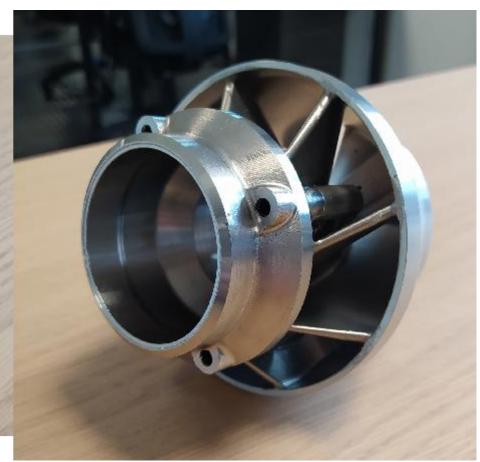




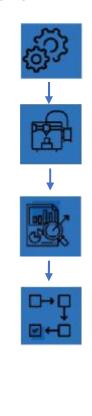
ATC: Studio di Fattibilità - Deposito e Fresature Pale



ATC: Studio di Fattibilità - Accoppiamento e Fresatura Cono Esterno



ATC: Studio di Fattibilità – Risultato Finale



ATC: Sviluppo & Ottimizzazione dei Processi

CO-ENGINEERING

.

STUDIO DI FATTIBILITA' E PROTOTIPAZIONE

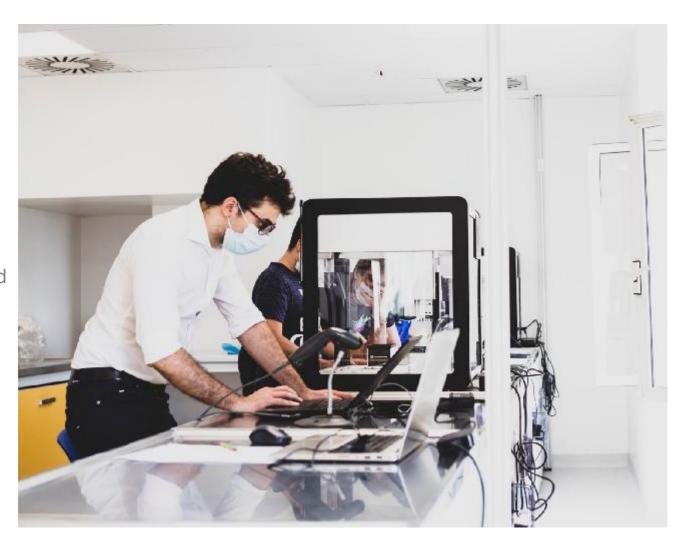
ANALISI PRE-COMPETITIVA

SVILUPPO E OTTIMIZZAZIONE DEL PROCESSO

- Selezione del processo corretto per la produzione del componente
- Verifica della stabilità del processo mediante la stampa di una pre-serie
- Definizione e ottimizzazioni di tutte le fasi di processo e di post-processing

VALIDAZIONE DEL PROCESSO

 Validazione di processo mediante test distruttivi e/o test funzionali


ATC: Sviluppo & Ottimizzazione dei Processi - Caso Studio - SLM

Covmatic

Covmatic is an open—source, high throughput system for COVID—19 testing. It is developed by a team of <u>volunteers and partner organizations</u> in Italy. This technology is <u>freely available</u> to all the labs in the world who need to efficiently scale testing.

The system consists of 10 liquid handling robots and 3 qPCR machines, overseen by a cloud-based control software. Each patient sample is automatically tracked through its barcode. The system generates and stores digital records, to comply with regulatory standards.

Learn more on www.covmatic.org

ATC: Sviluppo & Ottimizzazione dei Processi - Caso Studio -

Corporate Partners

Porsche Consulting Multiply Labs Transearch Crispy Bacon WeMake
ATC Additive
ABB
IBM

Benchling
OpenDot
OpenTrons

Academic Partners

Politecnico di Milano Universitá degli Studi di Milano IIT

Association Partners

Rotary International

ATC: Sviluppo & Ottimizzazione dei Processi - Caso Studio - SLM

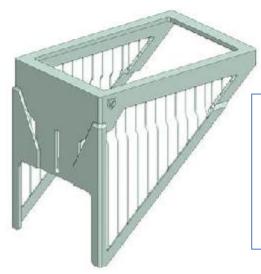
Problema

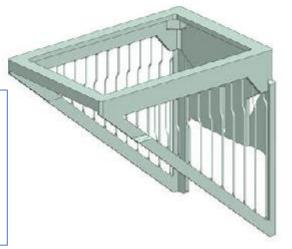
Standard Gripper con bassa rigidezza (124 - 135)(89.50)Holder for Campionamento Automatico per il COVID Test

Redesign del Gripper con aumento della rigidità ed un utilizzo semplificato

Soluzione

ATC: Sviluppo & Ottimizzazione dei Processi - Caso Studio -


La semplificazione
dell'utilizzo del
componente richiede
una riduzione
dell'interferenza tra
Gripper e Holder



Calibrazione del processo
SLM per ridurre
l'interferenza e mantenere
la corretta luce tra gripper
e resto della macchina

ATC: Formazione&Consulenza

- Formazione sulle Tecnologie Additive con Corsi Dedicati
- Training on the job, seguendo tutte le fasi dello sviluppo del processo
- Consegna della "Ricetta" per la Produzione di Serie

ATC: Sintesi&Conclusioni

- Studi di Fattibilità
- Ottimizzazione e Validazione del Processo
- Training on the job
- Acquisizione della "Ricetta" per la Produzione di serie
- Partnership per Progetti Finanziati

Thanks for Attention

<u>www.atc-additive.com</u> <u>francesco.stortiero@atc-additive.com</u>

