



# Le frontiere della produzione di massa attraverso la manifattura additiva: AM 2.0

**Desktop Metal** 

Giuseppe Cilia

Regional Sales Manager Southern Europe

giuseppecilia@desktopmetal.com

+39 349 9070224

### **Desktop Metal History**

**Desktop Metal™** □ is founded by Ric Fulop alongside leaders in collaboration with world-leading experts in materials science, engineering, and 3D printing.



Over the course of two years, their work pulls multiple independent inventions together to form the DNA for Desktop Metal's technology.

[APR] Desktop Metal is officially launched with the introduction of the Studio System, the world's first officefriendly metal 3D printing system, and the Production System, the world's fastest mass production printer.







[DEC] Desktop Metal begins shipping Studio System to pioneer customers. The first to receive a printer is Google's ATAP.



[NOV-DEC] Desktop Metal is awarded two seminal Separable Support patents for its metal 3D printing technology

MAR] Desktop Metal announces Series D follow-on funding, led by Ford and Future Fund, bringing the company's total funding to date to \$277M; analysts place valuation of the company at \$1.1 billion







[MAR] Shipment and installation of first ever Production System



[OCT-NOV] Desktop Metal introduces Fiber, the world's first desktop 3D printer to fabricate high resolution parts with continuous fiber composite materials used in automated fiber placement processes. And Shop System, the world's first metal binder jetting system designed for machine shops and metal job shops.



[DEC] Desktop Metal goes public via SPAC merger becoming the world's only publicly traded pureplay additive manufacturing 2.0 company



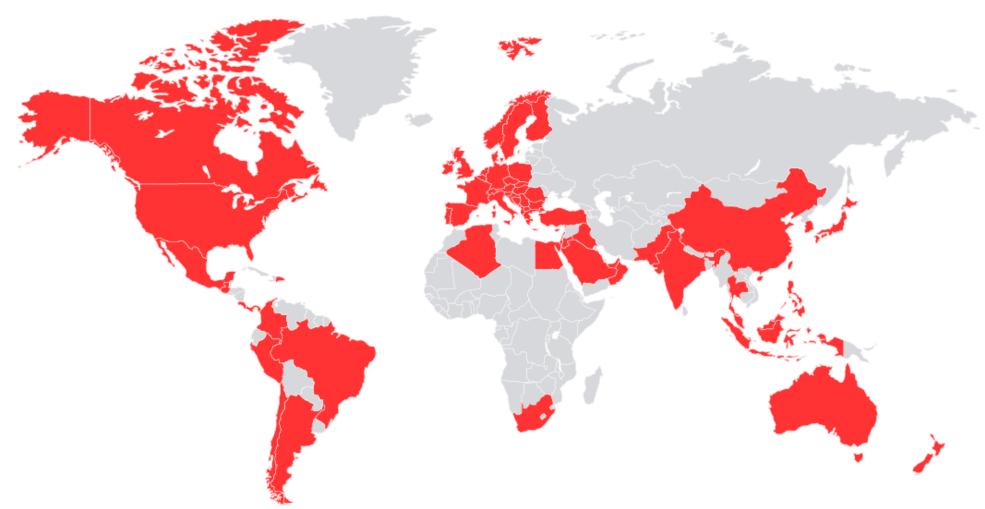
[NOV] Desktop Metal announces the debut of Live Sinter, a Dynamic sintering simulation software.



[DEC] Desktop Metal expands the Production System lineup with the addition of the P-1 Printer designed to bridge process development and fullscale metal parts mass production






[JAN] Desktop Metal launches the Studio System 2, delivering two-step, office-friendly metal 3D printing.

#### envisiontec

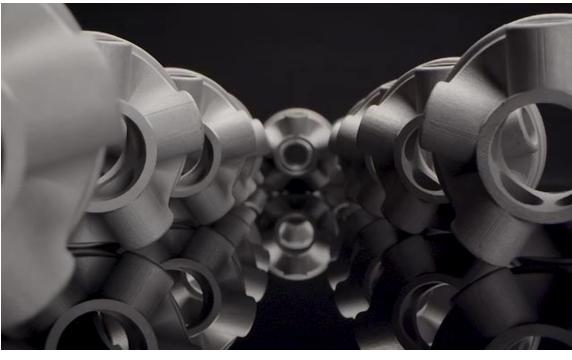
[FEB] Desktop Metal acquires EnvisionTEC entering market for volume production polymer additive manufacturing



# Distribution and local support in 60+ countries around the world



The additive manufacturing industry is at an inflection point


# Approaching the next generation of technology: Additive Manufacturing 2.0

Volume production of end-use parts

- Finish
- Accuracy
- Properties
- Low-cost
- High-speed

#### Additive Manufacturing 2.0 will be driven by:





#### **Accessibility**

 Parts that used to be too expensive or difficult to print can now be justified with new low cost, accessible
 3D printing technologies

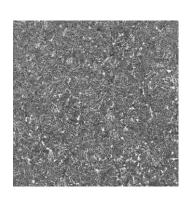
#### **High Volume Manufacturing**

 What used to be a niche manufacturing process to produce one or a handful of parts can now be used to produce end use parts in high volume

#### AM 2.0 - Metals

At-scale with comparable quality, speed, and cost of legacy processes




#### Finish

Meeting or exceeding end use part requirements



#### Accuracy

Similar to casting or MIM



#### **Properties**

Isotropic and meeting or exceeding standards



#### Cost & Speed

Equal or better than CNC and casting


Binder Jetting

# Introduction to binder jetting

# Binder jet is a key technology for mass production

Binder jetting has emerged as a key technology for mass production of metal parts using 3D printing, given its cost and throughput advantages relative to laser powder bed fusion (LPBF) technology.

- High throughput production via raster-based printing
- Low cost material inputs from established supply MIM chain with a broad portfolio of materials
- Attractive part costs across an array of applications
- Design flexibility
- Isotropic material properties
- Scalable to large build boxes sizes & large parts
- Low-waste process with re-usable material inputs



# What is binder jetting

Binder jetting is an additive manufacturing powder metallurgy process in which a liquid binding agent (or "binder") is selectively deposited onto a powder bed to bond powder particles together and form a solid part one layer at a time. Commonly used materials in binder jetting include metals, sands, and ceramics.



To date, metal 3D printing has barely scratched the surface.

\_\_\_

For Prototyping and Tooling, it's been too industrial and expensive.

\_\_\_

For Volume Production, it's not fast or cheap enough.

#### These challenges led to limited applications

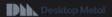
- High part cost tolerable
- High tolerances required
- Excellent material properties required
- Limited applications: specialized, not cost-sensitive, relatively low volume parts



Aerospace

Borescope eye for geared turbofan




Medical

Orthopedic hip implant

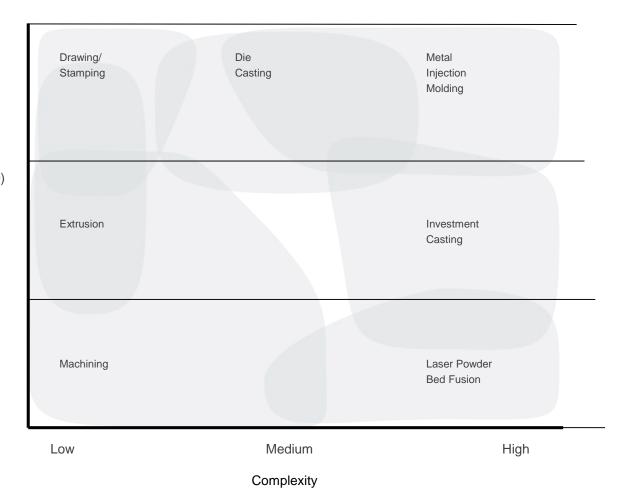


It's time for the next generation of metal 3D printing: AM 2.0

Metal Additive vs. Traditional Methods



## Manufacturing Technologies Complexity


High-volume production (100,000+)

Mid-volume production (10,000-100,000)

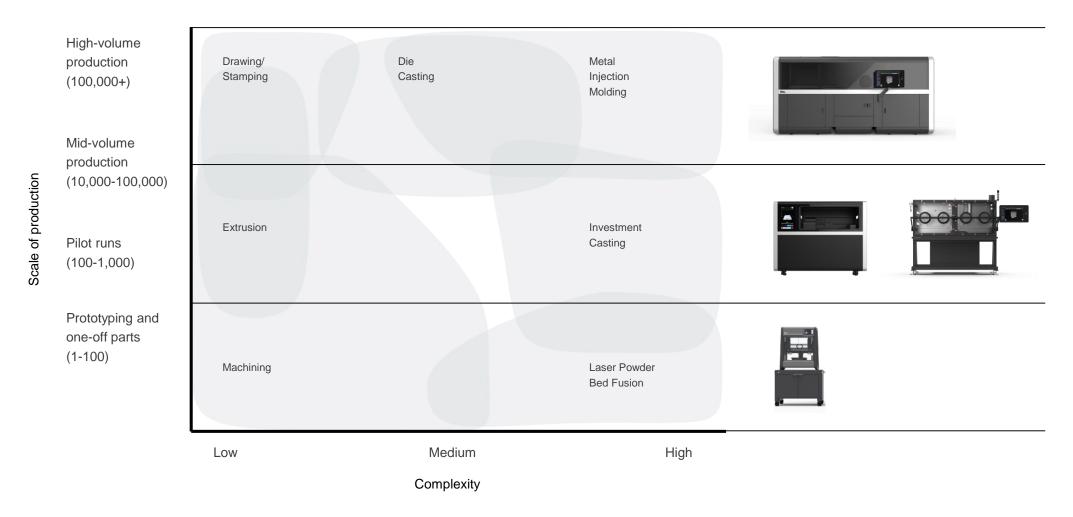
Pilot runs (100-1,000)

Scale of production

Prototyping and one-off parts (1-100)










- Months to bring a production line up
- Less design iteration
- Sacrificing design optimization for ease of manufacturing
- For Powder Metallurgy only high quantities can be justified to amortize tooling

# Tooling-free manufacturing

## Desktop Metal systems unlock speed, cost, and performance benefits at any scale and any level of complexity



# Turnkey solutions offer easy entry into industrial 3D printing while open-platform, high-volume systems deliver low part costs

Continuous Fiber

Metal in office

Metal in production

Fiber™□

Continuous fiberreinforced parts with aerospace-grade AFP tape. Studio System™ 2

Turnkey, office-friendly production of metal parts in-house.

Shop System™ □

Turnkey batch production of fully dense customer-ready parts.

Designed for machine shops

Production System™ □ P-1

Open-platform, highly tunable system for cost-effective serial part production. Development bridge to mass production with the P-50.

Production System™ □ P-50


High-speed, mass production of metal parts, designed for the factory floor.













Ease of use with automated workflows and turnkey solutions

Volume production with attractive part economics

#### How does Binder Jetting compare?



#### Binder Jetting

01\_Prep (≈1 day)

- Support Design
- Build Preparation

02\_Pilot Production (≈4 days)

- Pilot Print
- Crosslink
- Depowder
- Sinter

03\_Production (≈1 week)

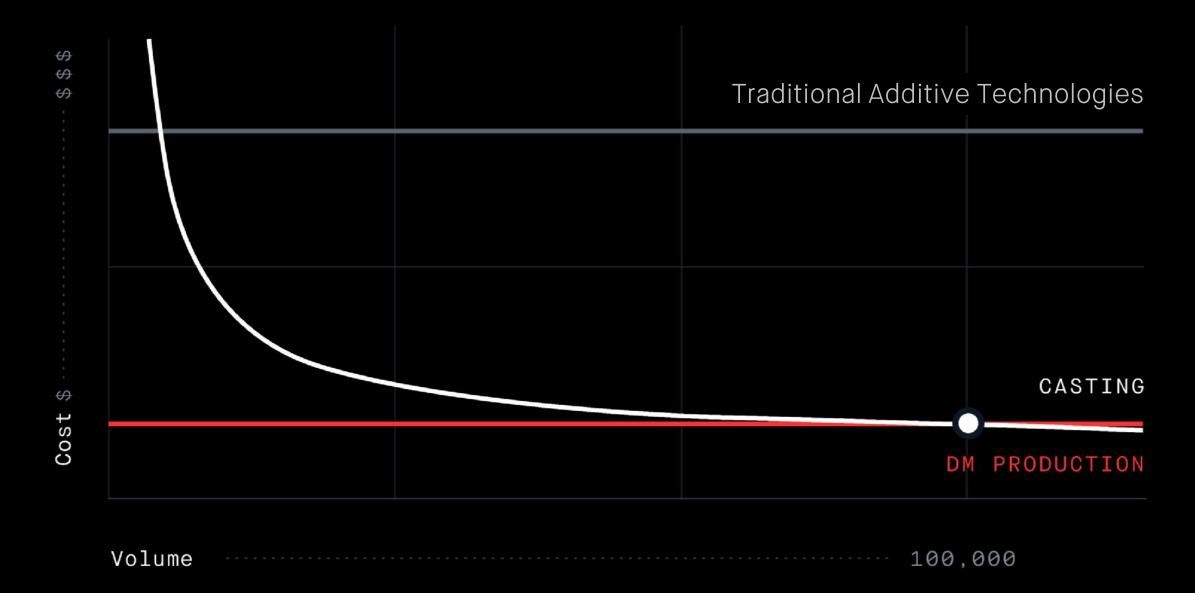
- Customer Approval
- Volume Production

What happens if the design changes?

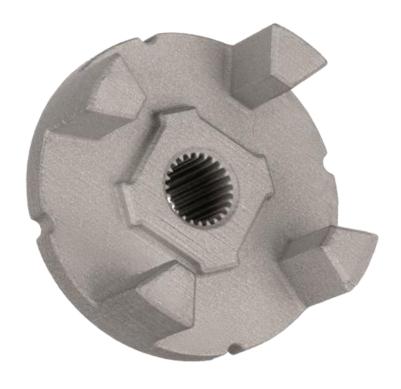
## To produce high-resolution parts without tooling



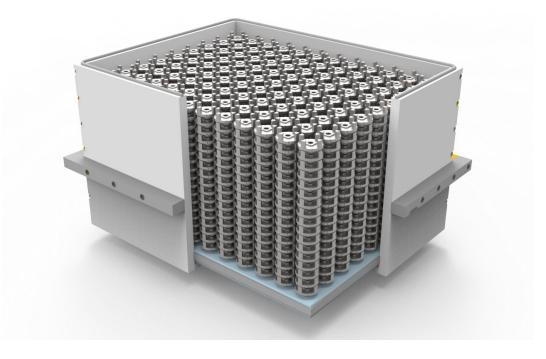
# Enabling product innovation from design phase through to mass production






Design & Prototyping Optimization Mass Production


# Competitive Cost-per-part



#### Power Steering Joint



This joint is designed to transfer power from an electric motor to the steering wheel



Material

Size

17-4 PH

36 x 36 x 22 mm

Cost / Part

Parts / Build

Throughput / Year

\$2.52

646

1,206,471

Fuel Swirler



This swirler is used to push the fuel mix into the burner.



Material

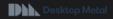
Size

17-4 PH

30 x 30 x 10 mm

Cost / Part

Parts / Build


Throughput / Week

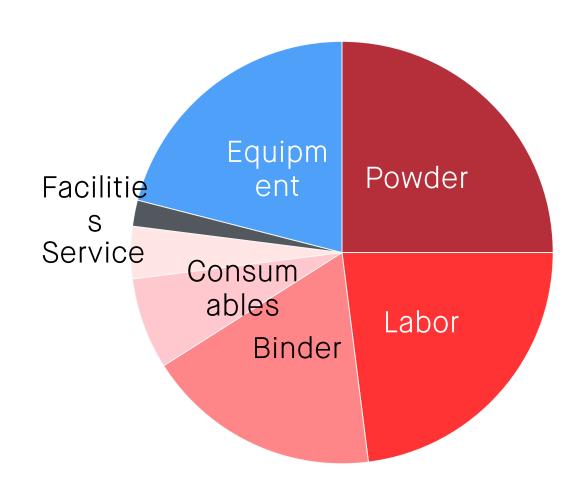
\$4.95

641

5,761

**Cost Model** 

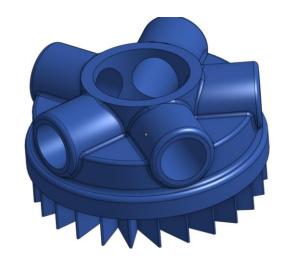



# 3D printing on the manufacturing floor: volume production with no tooling!



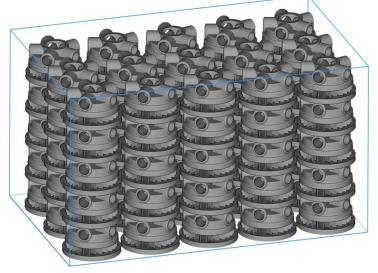


### What goes into part cost?


- Operating costs full process
  - Raw materials (binder & metal powder)
  - Machine consumables (printheads, etc.)
  - Utilities (gas & electric)
  - Labor (@ default of \$30 / hr)
  - Equipment service
- Equipment costs
  - Depreciation (@ default of 3 years)

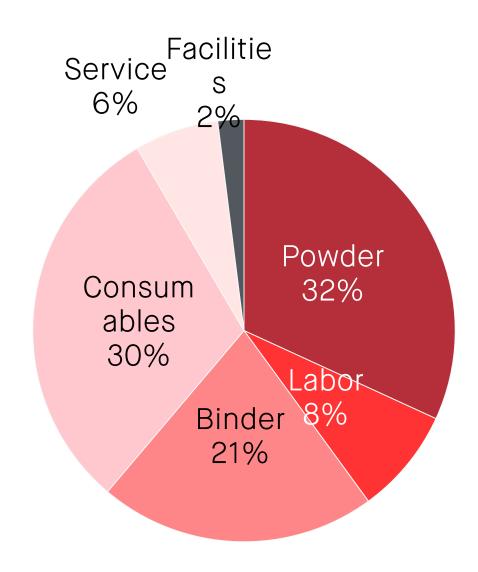





## Rotating manifold

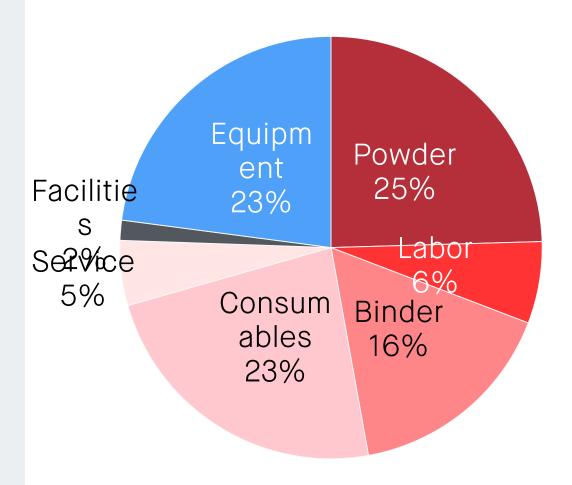
- Machining requires multiple set-ups
- Part information
  - Pre-scaled dimensions: 50 x 50 x 27 mm
  - Pre-scaled volume: 24,148 mm3
  - Parts per 16L build: 75
  - · Parts per week: 214
  - Parts per year: 11,115




Platform volume utilization
Current nesting density
Build height

27.05 % 27.62 % 195.89 mm




## Rotating manifold

- Machining requires multiple set-ups
- Part information
  - Pre-scaled dimensions: 50 x 50 x
     27 mm
  - Pre-scaled volume: 24,148 mm3
  - Parts per 16L build: 75
  - Parts per week: 214
  - Parts per year: 11,115
- Part costs
  - Excl. depreciation: \$50.20



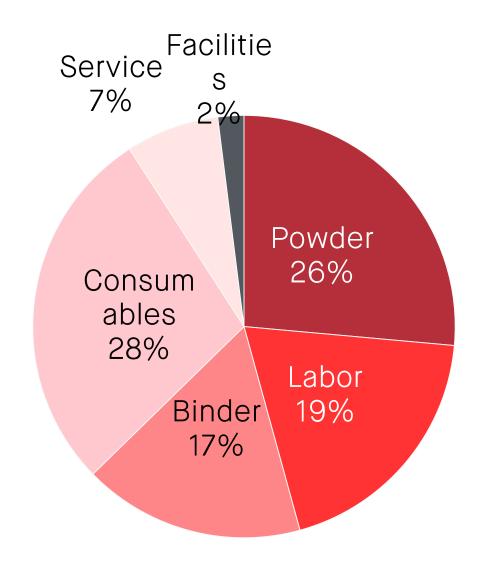
## Rotating manifold


- Machining requires multiple set-ups
- Part information
  - Pre-scaled dimensions: 50 x 50 x 27 mm
  - Pre-scaled volume: 24,148 mm3
  - Parts per 16L build: 75
  - Parts per week: 214
  - Parts per year: 11,115
- Part costs
  - Excl. depreciation: \$50.20
  - Incl. depreciation: \$65.13 (\$2.70 per cc)



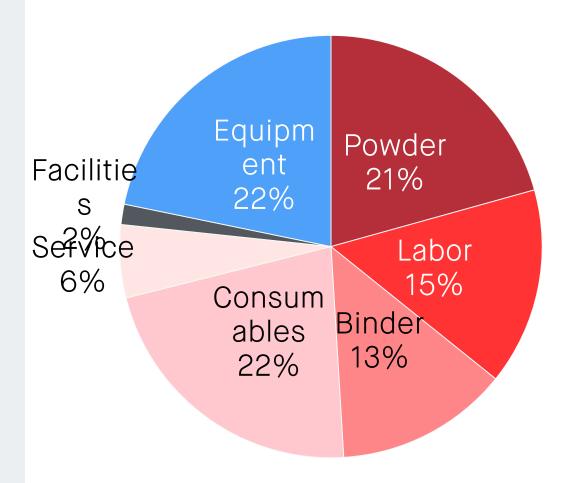
#### Swivel base

- Very difficult part to manufacture via casting or machining
- Part information
  - Pre-scaled dimensions: 25 x 25 x 19 mm
  - Pre-scaled volume: 3,287 mm3
  - Parts per 4L build: 120
  - Parts per week: 1,140<sup>1</sup>
  - Parts per year: 59,280<sup>1</sup>






49.97 mm


#### Swivel base

- Very difficult part to manufacture via casting or machining
- Part information
  - Pre-scaled dimensions: 25 x 25 x 19 mm
  - Pre-scaled volume: 3,287 mm3
  - Parts per 4L build: 120
  - Parts per week: 1,140
  - Parts per year: 59,280
- Part costs
  - Excl. depreciation: \$8.55



#### Swivel base

- Very difficult part to manufacture via casting or machining
- Part information
  - Pre-scaled dimensions: 25 x 25 x 19 mm
  - Pre-scaled volume: 3,287 mm3
  - Parts per 4L build: 120
  - Parts per week: 1,140
  - Parts per year: 59,280
- Part costs
  - Excl. depreciation: \$8.55
  - Incl. depreciation: \$10.92 (\$3.32 per cc)



# Shop System™ economics vs. Production System

|                                          | Shop System                               | Production System                         |
|------------------------------------------|-------------------------------------------|-------------------------------------------|
| Throughput (parts / week)                | ~100 - 1,000                              | ~10,000 - 50,000                          |
| Max speed                                | Up to 800 cc/hr                           | Up to 12,000 cc/hr                        |
| Average process time (end-to-end)        | 3 - 4 days                                | 2 days                                    |
| Sintered cost / cc (17-4PH) <sup>1</sup> | ~\$2.00 - \$5.00                          | ~\$0.25 - \$0.75                          |
| Build volume                             | 350 x 220 x 200 mm (up to)                | 490 x 380 x 260 mm                        |
| Surface roughness                        | 4 μm Ra<br><0.1 μm Ra with mass finishing | 4 μm Ra<br><0.1 μm Ra with mass finishing |
| Resolution                               | 16 μm voxel                               | 21 µm voxel                               |
| Facilities requirements                  | Yes                                       | Yes                                       |
| Part anatomy                             | Fully dense                               | Fully dense                               |



<sup>&</sup>lt;sup>1</sup> Part cost estimates are fully burdened, including materials, consumables, equipment depreciation, service, labor, and utilities.