

Un laboratorio al servizio dell'innovazione Analisi avanzata delle performance in un case history per applicazioni lightweight

Riccardo Girelli - LABORMET DUE

Sergio Giardino - SOAG EUROPE

UN LABORATORIO AL SERVIZIO DELL'INNOVAZIONE

- ✓ Un laboratorio completo e all'avanguardia come competence center per analisi su materiali e prodotti termoplastici, attivo da maggio 2020.
- ✓ Focalizzato in materiali plastici per test e valutazioni delle materie prime, omologazione prodotti, failures detection.
- ✓ Un'offerta completa in Italia di test di laboratorio e servizi aperta a società del settore dal Q2-2021.
- **Dotato** di strumentazione di ultima generazione, certificazione ISO 17025 in corso

LABORMET DUE

Specializzati nel campo degli strumenti scientifici per laboratorio e controllo qualità

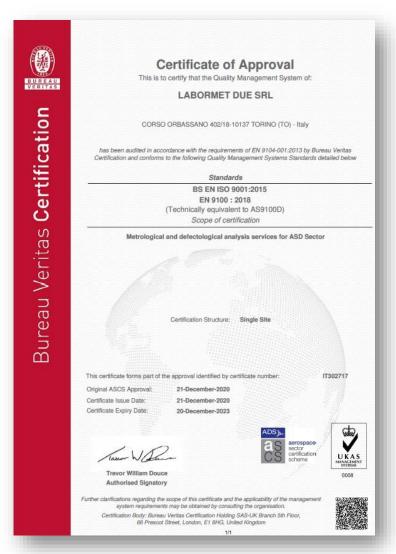
- ✓ Strumenti, e relativi consumabili, per il controllo di metalli, polimeri, ceramici e compositi.
- ✓ Caratterizzazione e tecniche di misura: metallografia, microscopia ottica e elettronica, analisi immagine, prove fisiche e meccaniche, simulazione ambientale, analisi chimica, metrologia nella ricerca, produzione e controllo qualità.

Fornitura servizi tramite il nostro Laboratorio di Metrologia e Industrial X-Ray Computed Tomography

- > Failure Analysis
- > 3D metrology
- Reverse Engineering
- Defect Analysis

- > Electronics inspection
- > Assembly Verification
- ➤ Weld Quality Analysis
- > Product contamination

- ➤ Food Product Inspection
- Packaging Inspection
- Cultural Heritage
- > e molto altro...



LABORMETOUE ISC LAB

CERTIFICAZIONI AZIENDALI

Servizi di analisi metrologica e difettologica per il settore ASD

STRUMENTI DI LABORATORIO

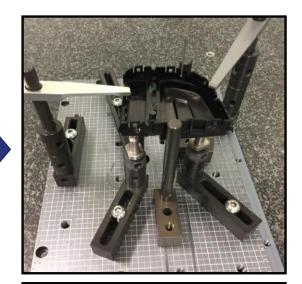
Analisi tomografica avanzata

Waygate tech.
Phoenix v|tome|x m

Microfocus X-Ray Tube	Open & Directional
Max tube voltage	300 kV
Max power	500 W
Focal Spot	4 μm
Detector type & dimensions	DXR 250 GE 300 x 300 mm
Diode dimension - pixel	200 μm
Filament & Target	Tungsten
Frame Rate	30 fps
Grayscale	16 Bit
Window	Berillium
Max Sample Sizes & Weight	300 x 600 mm 50 Kg

Waygate tech. Phoenix v|tome|x c

Minifocus X-Ray Tube	Closed
Max tube voltage	450 kV
Max power	700 W / 1500 W
Focal Spot	0,4 mm (700 W) / 1,0 mm (1500 W)
Detector type & dimensions	GE dynamic 41 200, 410x410 mm, 2036x2036 pixels
Diode dimension - pixel	200 μm
Filament & Target	Tungsten
Frame Rate	30 fps
Grayscale	16 Bit
Window	Berillium
Max Sample Sizes & Weight	500 x 1000 mm 50 Kg

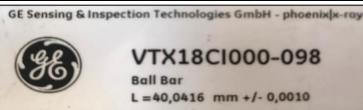


VANTAGGI DELLA TC INDUSTRIALE

Nella metrologia dimensionale

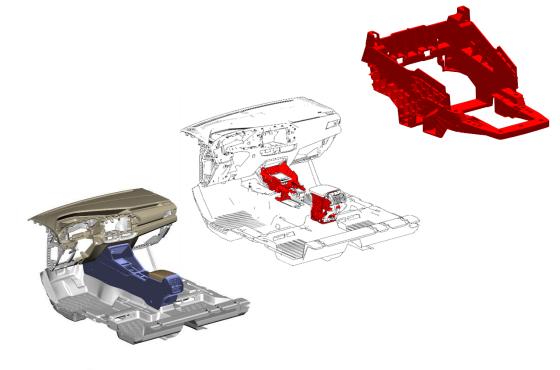
Svantaggi dei Sistemi Convenzionali			
Calibri dedicati	Sezionatura campioni per controllo interno		
Disponibilità CMM ottiche	Utilizzo di più strumenti per controllo completo		
Taratura calibri	Possibili deformazioni durante lo staffaggio		
Taratura CMM	Impossibilità comparazione dopo il montaggio		
Certificazione dei tastatori			

- > Basso costo staffaggio
- > Nessuna deformazione
- > Controllo simultaneo di più campioni
- > Più tipi di controllo in un ciclo



Calibrazione metrologica CT Scanner

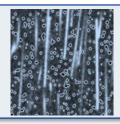
- ✓ Calibrazione sistema nella posizione di scansione del campione
- ✓ Rapida < 5 minuti



ANALISI AVANZATA DELLE PERFORMANCE IN UN CASE HISTORY PER APPLICAZIONI LIGHTWEIGHT

- ✓ Un case history di ricerca industriale e sviluppo sperimentale in una **applicazione automotive** per componenti lightweight strutturali di interior e a ridotto environmental footprint
- ✓ Targets di performance sfidanti in analisi comparate virtuali e sperimentali
- ✓ Diagnostica di laboratorio innovativa per la validazione non solo delle performance ma di ottimizzazione dei processi e di caratterizzazione per le simulazioni virtuali

IL PROGETTO DI INNOVAZIONE


Sviluppo con 🎉 🖍 Å Å pri di soluzioni innovative a bassa densità per interior trims automotive, anche da circular economy

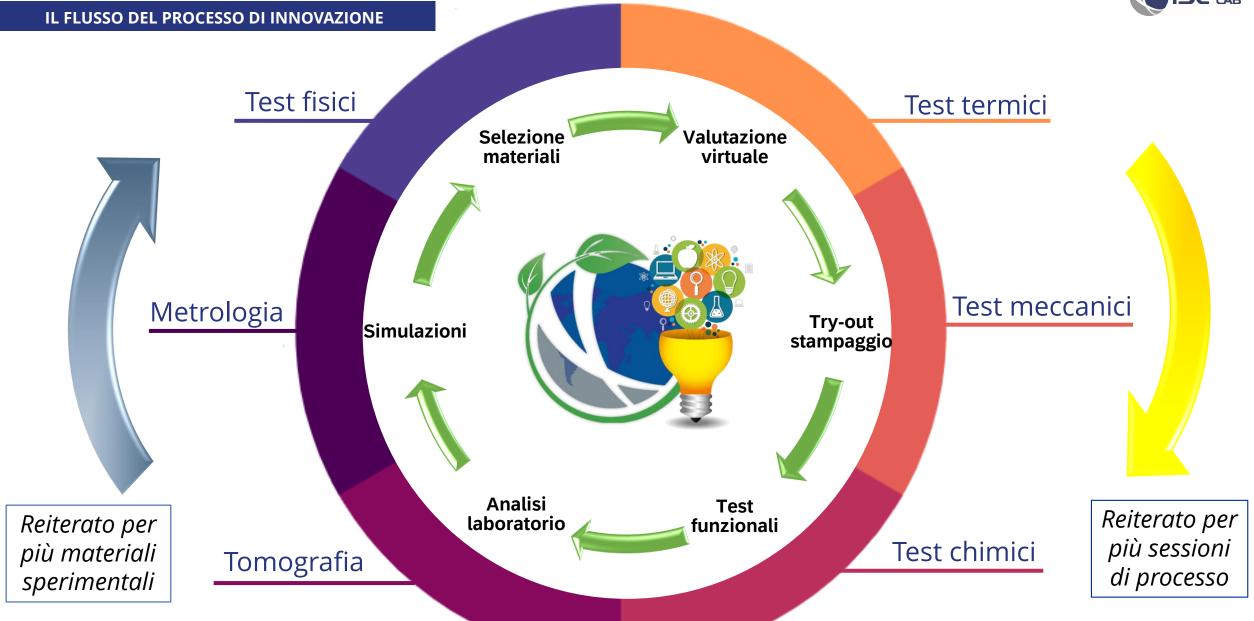
Su base polimerica **PP**, RI & SS di soluzioni tailor made per **compound low density**, a performance comparabili con ρ < 15% min

Scelta la **tecnologia di Maip** sulla famiglia prodotti **«ARIA»**

☐ Tecnologie d'alleggerimento innovative per superare alcuni limiti prestazionali (a.e. espansione micro cellulare tramite gas molding)

Filler misti anche da processi di Circular Economy (~5÷7%), con tecnologia HGM

■ Esecuzione di **loop completi** (simulazione/pre-validazione) d'affinamento performance su **case study complesso**, in contesto significativo per il peso complessivo del veicolo


Supporto strutturale di console centrale di autoveicolo (>100K cars/Y)

■ Test e caratterizzazione anche verso analisi FEA delle soluzioni in studio, comparazione virtuale (misuse, head impact UN R21, quality perception) del sistema prima della sperimentazione in fisico

Analisi di laboratorio di ISC Lab, loop di affinamento
reiterati

TEST FISICI

DENSITA'

1SO 1183-1

Obiettivo: valutazione dell'alleggerimento del componente

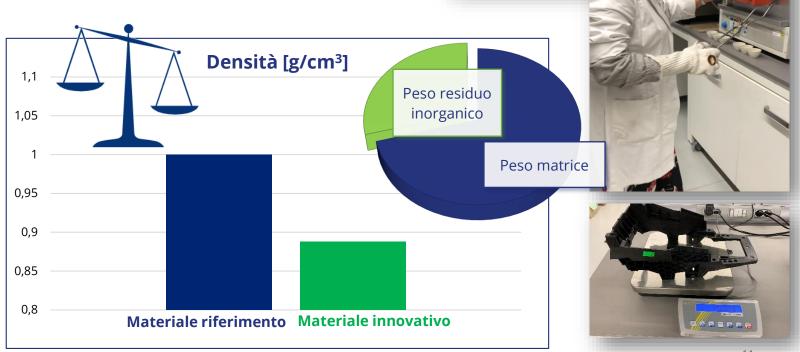
Esito dei loop di prove: riduzione di peso complessivo raggiunto **16.2%**

INDICE DI FLUIDITA'

Obiettivo: valutazione del melt flow index del materiale in ottica processabilità

Esito della prova: buona fluidità lievemente superiore al materiale di riferimento, apporta efficienza prodotto/processo

RESIDUI DI CALCINAZIONE


Obiettivo: valutazione del residuo inorganico

Esito della prova: conforme al target

prefissato

TEST TERMICI

ANALISI DSC

Calorimetria differenziale a scansione

Obiettivo: identificazione della massima velocità di fusione dei cristalli del polimero (T_picco)

Esito della prova: nel target atteso

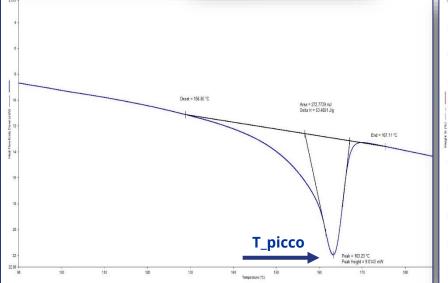
ANALISI TGA

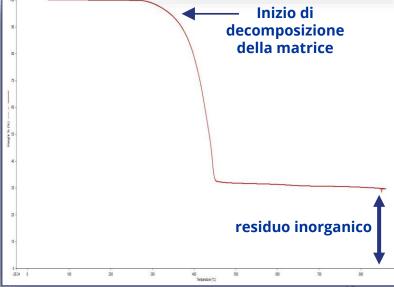
Analisi termogravimetrica

Obiettivo: valutazione della temperatura di decomposizione del polimero e residuo inorganico presente nel materiale

Esito della prova: nel target atteso

VICAT e HDT


Analisi temperatura di deflessione



Esito della prova: conforme al target 💙

TEST MECCANICI

RESISTENZA ALLA FLESSIONE

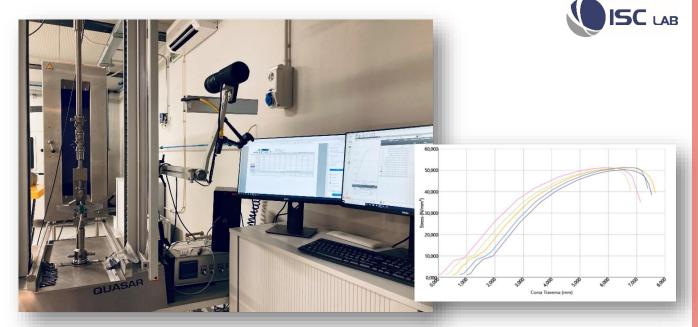
Esito: superiore al target

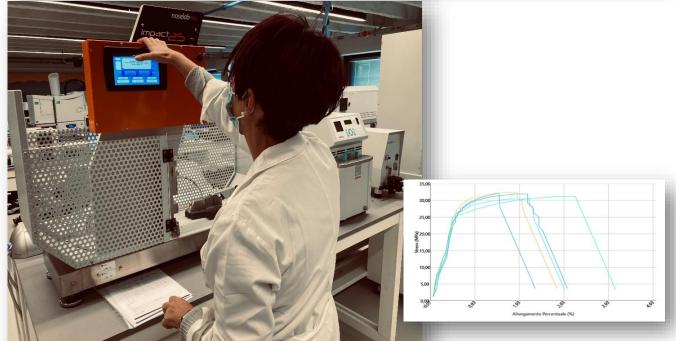
RESISTENZA ALL'URTO A FREDDO 🗸

Esito: conforme al target

MODULO ELASTICO

Esito: superiore al target



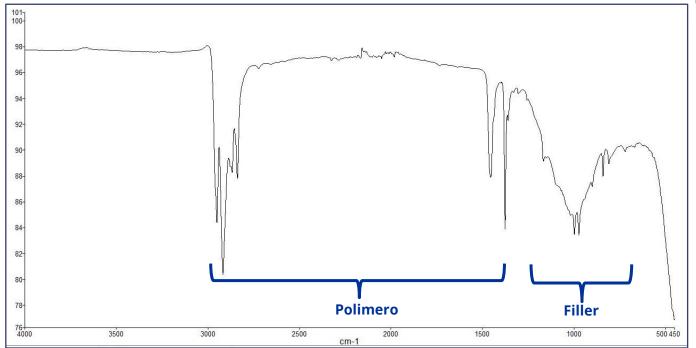

ALLUNGAMENTO ALLA ROTTURA

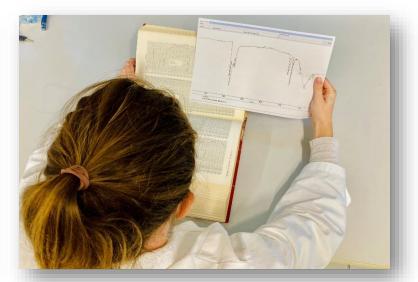
Esito: lievemente inferiore al target

(necessario ulteriore loop affinamento compound)

TEST CHIMICI

ANALISI FT-IR


Spettrofotometria infrarossa in riflettanza totale attenuata (FTIR-ATR)


Obiettivo: identificazione mediante raggi infrarossi dei legami chimici costituenti il materiale in esame

Esito della prova: nei targets attesi

TEST CHIMICI

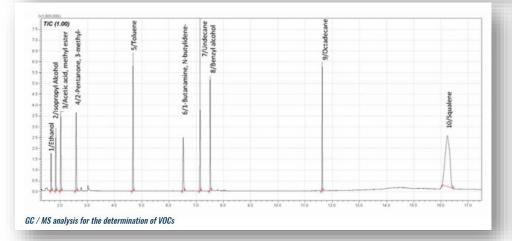
ANALISI AL GAS_CROMATOGRAFO E SPETTROMETRO DI MASSA

HS-GC/MS

Headspace gascromatography/mass spectrometry

HS-GC/FID

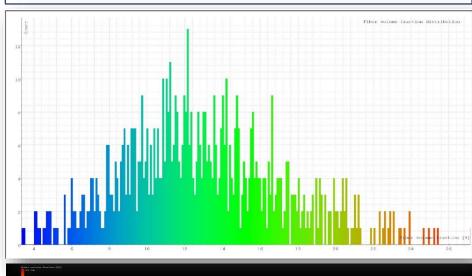
Headspace gaschromatography/flame ionization detection

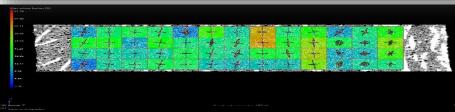

Obiettivo: ricerca di sostanze organiche volatili non in linea con normativa e/o residui di additivi emessi dal materiale eccedenti all'atteso.

Esito della prova: conforme alle aspettative previste a progetto dal piano di sperimentazione di Sigit e in compliance con la normativa vigente.

ECT	DICILITATO

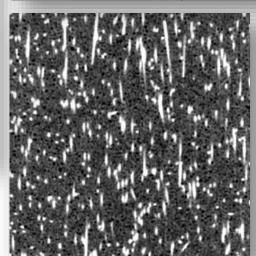
TEST	RISULTATO	REQUISITI	ESITO		
CAMPIONE ESAMINATO					
EMISSIONE DI COMPONENTI ORGANICI	40,0 / 39,0 / 39,0 μgC/g MW: 39,3 μgC/g	$\leq 50 \mu gC/g$	PASS		

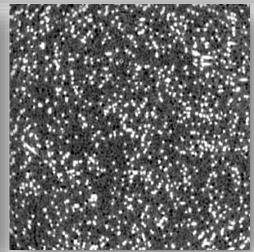


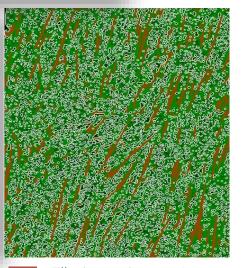


TOMOGRAFIA INDUSTRIALE

ANALISI TOMOGRAFICA MANUFATTO


Obiettivo 1: Investigare l'orientamento e la distribuzione dei vari filler inorganici nella matrice polimerica. È possibile sondare anche i punti critici come linee di giunzione di flusso, fissaggi, zone di maggiore stress, deformazione orientamento dei filler, numero e saturazione delle microcapsule





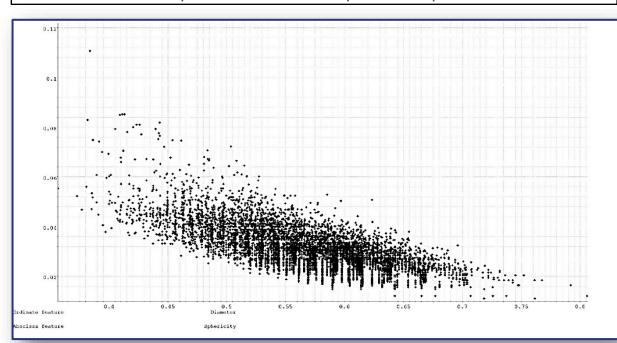
Analisi di distribuzione dell'orientamento delle fibre dei diversi materiali

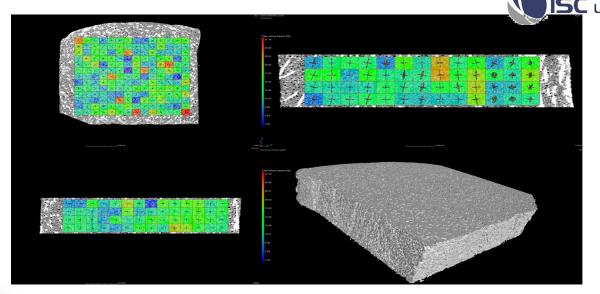
Analisi densità presso punti iniezione

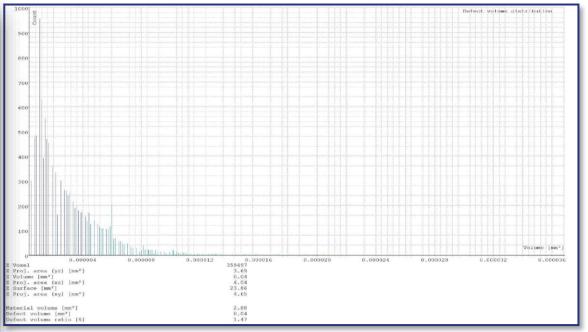
Distribuzione microcapsule

Filler inorganico mat. 1
Filler inorganico mat. 2
Matrice

ISC LAB


TOMOGRAFIA INDUSTRIALE


DIAGNOSTICA PER OTTIMIZZAZIONE PERFORMANCE


Obiettivo 2: Valutare nella massa il comportamento delle componenti che favoriscono l'alleggerimento del materiale (collassamento, interazione con polimero)

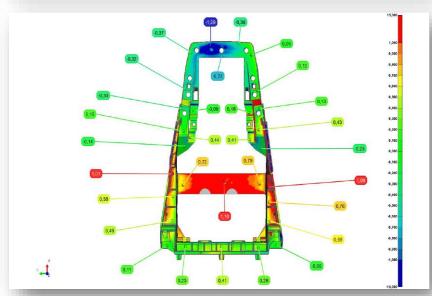
Obiettivo 3: Quantificare aspetti fisici (forma, dimensioni, distribuzione) delle microcapsule

Obiettivo 4: Valutare l'incidenza dei parametri di stampaggio e fornire valutazioni per ottimizzazione processo/performance

METROLOGIA

ANALISI DIMENSIONALE DEI CAMPIONI

Tramite misurazione a contatto e scansione

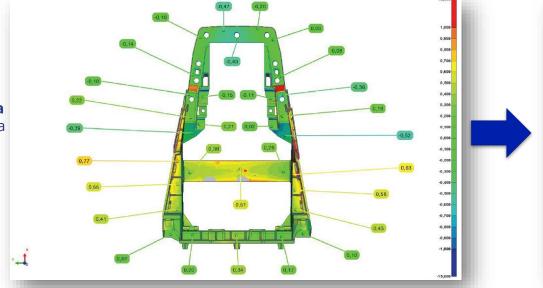

Il componente realizzato con il materiale innovativo presenta **migliori** performance di stabilità dimensionale rispetto al materiale di riferimento

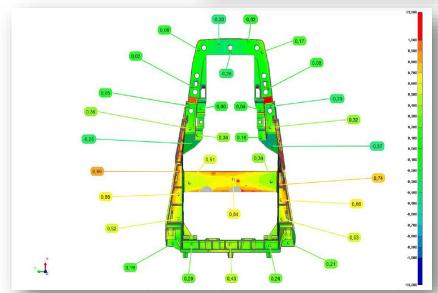
Materiale innovativo (#3, ultimo loop sperimentazione)

Materiale riferimento

Scala cromatica in funzione obiettivi target Sigit

METROLOGIA


STABILITA' DIMENSIONALE


Obiettivo: valutazione della stabilità dimensionale prima e dopo il ciclo termico

Esita della prova: positivo con variazione dimensionale inferiore a 0,02%, migliorativo rispetto al materiale di riferimento in zone a spessore ridotto

Materiale innovativo **prima** dei cicli in camera climatica

Materiale innovativo **dopo** i cicli in camera climatica

I RISULTATI

CONCLUSIONI

Ottimizzazione performance con metodologia avanzata e confronto numerico/sperimentale

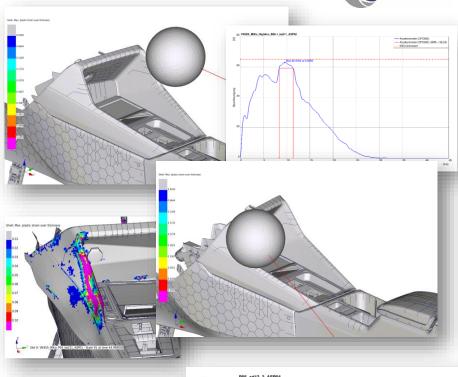
Output caratterizzazioni verso virtual simulation a supporto engineering di nuovi prodotti

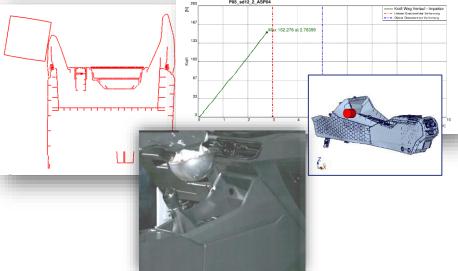
Percorso di innovazione supportato da valutazioni strumentali certificate

Alleggerimento componente nei target con notevoli possibilità di ulteriore miglioramento (ongoing)

Processo produttivo maggiormente efficiente (LCC)

Stabilità dimensionale migliorativa




Adeguata resistenza meccanica per impiego funzionale

CO₂ (LCA) migliorativo

LABORMET DUE Srl

Corso Orbassano 402/18 10137 – Torino (Italia) T: +39 011 740905

info@labormetdue.it www.labormetdue.it

ISC LAB SCarL Società Benefit

ISC - Innovation Square Center Corso Orbassano 402/15 10137 - Torino (Italia) T: +39 011 9134211

www.sigit.it www.soageurope.ch

