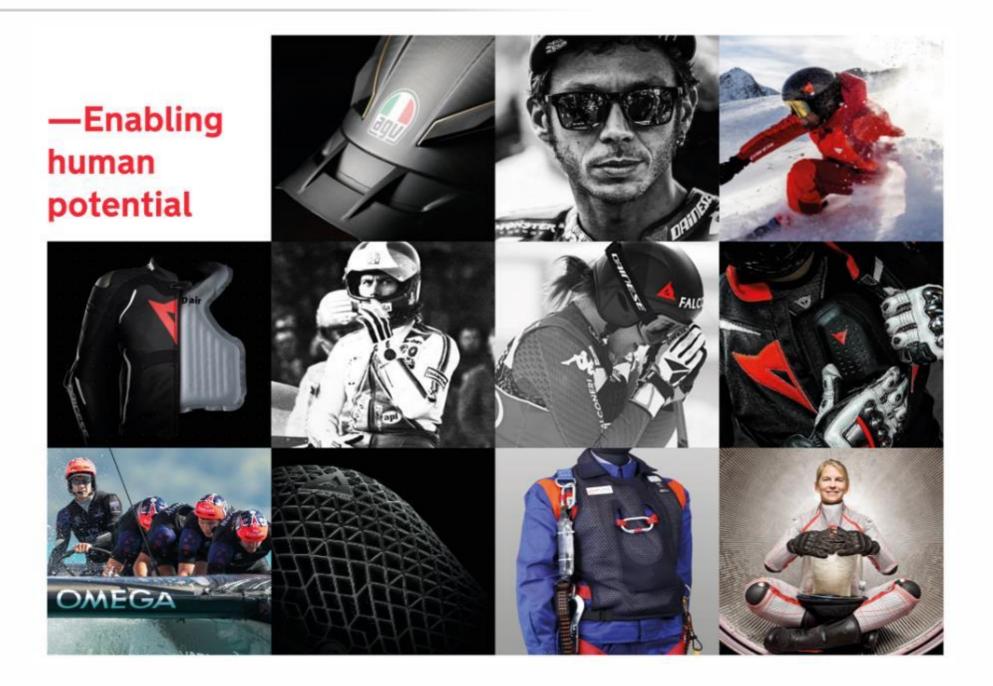


INDEX

- 1.ABSTRACT
- 2.INTRODUCTION TO DAINESE GROUP
- 3.AGV RANGE HELMET INTRODUCTION
- 4.MOTORBIKE HELMET SPECIFICATIONS
- 5.CASE STUDY 1: VISOR MOUVEMENT SYSTEM GT2

PLASTIC MATERIALS FOR MOTORCYCLE HELMETS


The use of plastic materials in motorcycle helmets is very popular today, both to guarantee the safety in the crash test and, at the same time, to help the all the mechanisms to work well.

The presentation, starting from how a motorcycle helmet is made, will define the main technical and operational problems in the choice of materials to be used to guarantee the required performance, with some examples managed over the years in Dainese for AGV products.

Recongnized as an indutrial desing excellence

Full «Head-to-toe» product offering

% of 2022 Dainese Revenues

AGV PRODUCT RANGE

Pista GP RR

High-range

Mid-range

Low-range

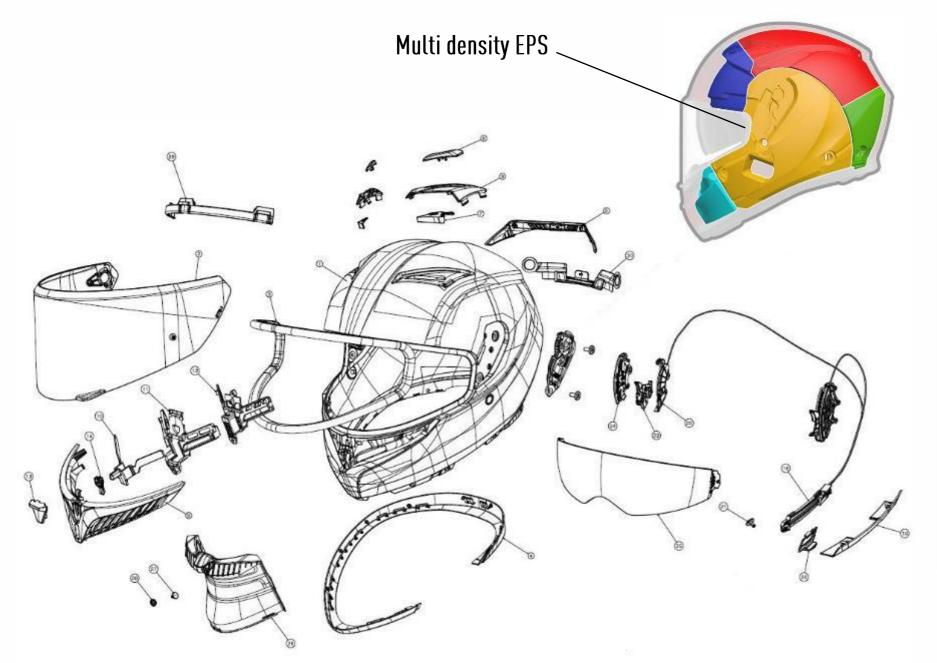
4. MOTORBIKE HELMET SPECIFICATIONS

KEY POINTS

Design

Homologation

Customer sizing & fit


Visor optical class 1

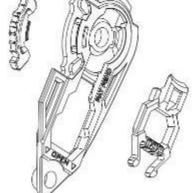
Aerodynamics

Noise reduction

4. MOTORBIKE HELMET SPECIFICATIONS

n.	Description	Material
1	SHELL ECE	ABS
2	VISOR GT6-1 PLK READY	PC
3	VISOR TRIM	EPDM
4	BASE TRIM	HDPE
5	REAR SPOILER	PC
6	BASE TOP VENT	PC
7	SLIDER TOP VENT	POM
8	BUTTON TOP VENT	PC
9	BASE CHIN VENT	PC
10	SLIDER CHIN VENT	POM
11	FRAME CHIN VENT	POM
12	SUBFRAME CHIN VENT	POM
13	BUTTON FINISHED MICRO-OPENING SYSTEM	PC/ABS+TPU
14	SPRING MICRO-OPENING SYSTEM	POM
15	GROUNDPLATE VISOR MECHANISM	POM
16	SPRING VISOR MECHANISM	POM
17	LEVER VISOR MECHANISM	POM
18	BASE SUNVISOR BUTTON MECHANISM MOVEMENT	PA66
19	FRAME SUNVISOR BUTTON MECHANISM MOVEMENT	PA66
20	SLIDER SUNVISOR BUTTON MECHANISM MOVEMENT	POM GF10
21	CHEEKPAD HOOKING BUTTON MALE	PA66
22	BASE SUNVISOR MECHANISM MOVEMENT	POM
23	SLIDER SUNVISOR MECHANISM MOVEMENT	POM
24	FRAME SUNVISOR MECHANISM MOVEMENT	POM
25	SUNVISOR	PC
26	CHIN COVER	PP
27	CHEEKPAD HOOKING BUTTON MALE	PA66
28	CHEEKPAD HOOKING BUTTON FEMALE	PA66
29	CROWNPAD FRONT HOOKING FRAME INMOLDING	PA66
30	CHEEKPAD HOOKING FRAME	PA66


PROBLEM: Q4 system was big, noisy, difficult to remove visor and not so reliable


Visor base groudplate (PA66) Visor tooth (POM) Spring (Steel) Visor removing lever (PA66)

A new mechanism has been developed taking in account:

- Components reduction \rightarrow from 4 to 3 parts
- Durability \rightarrow from 10000 cycles open/close to 30000 cycles
- Personalization \rightarrow 3 different spring movement shape (road, race, touring)
- Cost \rightarrow less material
- Easy to assembly/disassembly \rightarrow less locking points
- Smooth movement \rightarrow based on part flection during visor shaft movement up/down
- POM material for all components

Visor spring

Visor grounplate

Visor release lever

PROBLEM: screeching noise during mount / dismount visor

A screeching noise appear during development phase and as the unmount/mount is not so often this issue has been considered an unquality perception

All the others mechanism function was fully respected, so as the lever must have a spring function too, POM was mandatory, the only way to improvement was related to the GROUNDPLATE. So has been evaluate different materials, but with the fixed point to use the same mold already made. The choice has been to move to PA. Successfully test and validation have confirmed the PASS result for all the requirement and with the noise claim solved.

88	GROUNDPLATE	POM Black	New material	PA Black
	LEVER	POM Red	No change	POM Red

THANKS

Gianluca Galliano Helmets R&D Director

gianluca.galliano@dainese.com

https://www.linkedin.com/in/galliano-gianluca-9105364/