

Design and analysis of a test artifact according to ASTM 52902:2019 for evaluation of metrological characteristics of additive manufacturing systems using CT Scan, CMM and non-contact instrument

Ing. Luca Passani

Metrological dpt. Manager

OUR BUSINESS UNIT

INTEGRATED SERVICE TO GUARANTEE THE QUALITY AND PERFORMANCE OF YOUR PRODUCTS

CAMPOGALLIANO, (MO) | ITALY

5000 MQ TESTING AREA

80 EMPLOYEES

COMPANY PROFILE

Chemical analysis Metallurgical analysis Mechanical tests Failure analysis NDT

Industrial computed tomography
Dimensional analysis
Environmental and functional analysis
Inspections
Process and personnel certification
Academy

SECTORS

Aerospace
Automotive & Racing
Biomedical
Oil & Gas
General industries

PROCESSES

Additive manufacturing
Composites
Welding
MOCA

STAFF

Material engineers
Mechanical engineers
Chemists
Physics
Metallurgics
NDT 3rd Level
NDT 2nd Level

IWI - International Welding Inspectors IWE - International Welding Engineers IWT - International Welding Technologists

CERTIFICATION AND APPROVALS

ISO 9001:2015
EN 9100: 2018
17025:2018 - ACCREDIA
17024:2012 - ACCREDIA
17065:2012 - ACCREDIA
NADCAP AC 7101 for Materials Testing
NADCAP AC 7114 for Non Destructive Testing
ITANDTB CAE for NDT Qualification
GE Aviation

Leonardo Aircraft

Leonardo Helicopters

INDUSTRIAL SECTORS

INDUSTRIAL COMPUTED TOMOGRAPHY SYSTEMS

NSI X5000 CT SYSTEM

Scan volume: D = 500 mm, H = 1200 mm

Max payload: 90 kg Max resolution: 5 µm

SOURCE: X-Ray WorX 240	
X-Ray Tube Typology	Open, microfocus
Maximum Voltage	240 kV
Maximum Power	350 W
Focal Spot Size	5 μm
FLAT PANEL DETECTOR: Varian 2520 DX	
Pixel pitch	127 µm
Sensible Surface	250x200 mm
Maximum Acquisition Speed	12.5 fps - 30 binning
Greyscale resolution	16 bit
Scintillator	Cesium

Scan volume: D = 1500 mm, H = 3000 mm

Max payload: 250 kg Max resolution: 70 μm

SOURCE: Varian HPX 450-11	
X-Ray Tube Typology	Closed, minifocus
Maximum Voltage	450 kV
Maximum Power	1500 W
Focal Spot Size	0.4 mm
FLAT PANEL: PE XRD 1621 AN14 ES	
FLAT PANEL: PE XR	D 1021 AN 14 ES
Pixel pitch	200 μm
Sensible Surface	400x400 mm
Maximum Acquisition Speed	15 fps - 30 binning
Greyscale resolution	16 bit
Scintillator	DRZ + (Gadox)
LDA: Detection Technology 0.4iHE2-922	
Pixel pitch	400 µm
Length	92 cm
and the second second	00.4550.0

D76 MEV LINAC

Manipulator:	6-Axes granite-based
Variable FDD:	1500 – 4000 mm
Scanning envelope:	D = 1000 mm, H = 2000 mm
Max payload:	200 kg
Max dose rate:	2.5 Gy/min @ 3 MeV, 9.0 Gy/min @ 6 MeV
High resolution Line Detector Array:	length 600 mm, pixel pitch 200 μm
3K Flat Panel Detector 4343 HE:	active area 417 x 417 mm, pixel pitch 139 µm

DIMENSIONAL AND METROLOGICAL SYSTEMS

SECTORS

- Automotive
- Biomedical
- Aerospace
- Racing
- Industrial
- Mechanical processing
- Additive manufacturing
- Oil & Gas
- Electrical devices
- Ceramics
- Hydraulics
- Fasteners

SERVICES

- · Dimensional measurements
- Creation of measurement programs for CMMs, also remotely; design and realization of part clamping systems on measuring machines
- Gear control
- Reverse engineering
- 3D scanning
- Ct scanning
- On-site measurements
- IATF 16949 PPAP Consulting and technical support MSA, R&R gage and creation of control procedures
- SPC, process Capability and Cp, Cpk calculation
- Tests according to UNI EN ISO 1090 for certification obtainment
- Metrological consulting
- Training

ADDITIVE MANUFACTURING STANDARDS OVERVIEW Standards under the direct responsibility of ISO/TC 261

Document	Title	
ISO 17296-2:2015	Additive manufacturing — General principles — Part 2: Overview of process categories and feedstock	
ISO 17296-3:2014	Additive manufacturing — General principles — Part 3: Main characteristics and corresponding test methods	
ISO 17296-4:2014	Additive manufacturing — General principles — Part 4: Overview of data processing	
ISO/ASTM 52900:2015	Additive manufacturing — General principles — Terminology	
ISO/ASTM DIS 52900	Additive manufacturing — General principles — Fundamentals and vocabulary	
ISO/ASTM 52901:2017	Additive manufacturing — General principles — Requirements for purchased AM parts	
ISO/ASTM DIS 52921	Additive manufacturing — General principles — Standard practice for part positioning, coordinates and orientation	
ISO/ASTM 52921:2013	Standard terminology for additive manufacturing — Coordinate systems and test methodologies	
ISO/ASTM 52903-1:2020	Additive manufacturing — Standard specification for material extrusion based additive manufacturing of plastic materials — Part 1: Feedstock materials	
ISO/ASTM DIS 52903-2	Additive manufacturing — Standard specification for material extrusion based additive manufacturing of plastic materials — Part 2: Process — Equipment	
ISO 27547-1:2010	Plastics — Preparation of test specimens of thermoplastic materials using mouldless technologies — Part 1: General principles, and laser sintering of test specimens	
ISO/ASTM DTR 52905	Additive manufacturing — General principles — Non-destructive testing of additivemanufactured products	
ISO/ASTM CD TR 52906	Additive manufacturing — Non-destructive testing and evaluation — Standard guideline for intentionally seeding flaws inparts	
ISO/ASTM 52907:2019	Additive manufacturing — Feedstock materials — Methods to characterize metal powders	
ISO/ASTM PWI 52913	Additive manufacturing — Process characteristics and performance — Standard test methods for characterization of powder flow properties	
ISO/ASTM PWI 52928	Powder life cycle management	
ISO/ASTM AWI 52908	Additive manufacturing — Post-processing methods — Standard specification for quality assurance and post processing of powder bed fusion metallic parts	
ISO/ASTM AWI 52909	Additive manufacturing — Finished part properties — Orientation and location dependence of mechanical properties for metal powder bed fusion	

ISO/ASTM 52910:2018	Additive manufacturing — Design — Requirements, guidelines and recommendations	
ISO/ASTM 52911-1:2019	Additive manufacturing — Design — Part 1: Laser-based powder bed fusion of metals	
ISO/ASTM 52911-2:2019	Additive manufacturing — Design — Part 2: Laser-based powder bed fusion of polymers	
ISO/ASTM PWI 52911-3	Additive manufacturing — Technical design guideline for powder bed fusion — Part 3: Standard guideline for electron-based powder bed fusion of metals	
ISO/ASTM PRF TR 52912	Additive manufacturing - Design - Functionally graded additive manufacturing	
ISO/ASTM PWI 52914	Additive manufacturing — Design — Standard guide for material extrusion pro-cesses	
ISO/ASTM PWI 52922	Additive manufacturing — Design — Directed energy deposition	
ISO/ASTM PWI 52923	Additive manufacturing — Design decision support	
ISO/ASTM 52915:2016	Specification for additive manufacturingfile format (AMF) Version 1.2	
ISO/ASTM 52915:2020	Specification for additive manufacturingfile format (AMF) Version 1.3	
ISO/ASTM WD 52916	Additive manufacturing — Data formats — Standard specification for optimized medical image data	
ISO/ASTM WD 52917	Additive manufacturing — Round Robin Testing — Guidance for conducting Round Robin studies	
ISO/ASTM CD TR 52918	Additive manufacturing — Data formats — File format support, ecosystem and evolutions	
ISO/ASTM DIS 52950	Additive manufacturing — General principles — Overview of data processing	
ISO/ASTM PWI 52951	Additive manufacturing — Data packagesfor AM parts	
ISO/ASTM WD 52919-1	Additive manufacturing — Test method of sand mold for metalcasting — Part 1: Mechanical properties	
ISO/ASTM WD 52919-2	Additive manufacturing — Test method of sand mold for metalcasting — Part 2: Physical properties	
ISO/ASTM PWI 52927	Additive manufacturing — Process characteristics and performance - Test methods	
ISO/ASTM DIS 52941	Additive manufacturing — System performance and reliability — Standard test method for acceptance of powder-bed fusion machines for metallic materials for aerospace application	

ADDITIVE MANUFACTURING STANDARDS OVERVIEW Standards under the direct responsibility of ISO/TC 261

ISO/ASTM PWI 52920-1	Additive manufacturing — Qualification principles — Part 1: Conformity assessment for AM System in industrial use
ISO/ASTM WD 52920-2	Additive manufacturing — Qualification principles — Part 2: Conformity assessment at Industrial additive manufacturing centers
ISO/ASTM DIS 52924	Additive manufacturing — Qualification principles — Classification of part proper- ties for additive manufacturing of polymerparts
ISO/ASTM DIS 52925	Additive manufacturing — Qualification principles — Qualification of polymer materials for powder bed fusion using a laser
ISO/ASTM WD 52926-1	Additive manufacturing — Qualification principles — Part 1: Qualification of ma- chine operators for metallic parts production
ISO/ASTM WD 52926-2	Additive manufacturing — Qualification principles — Part 2: Qualification of ma- chine operators for metallic parts production for PBF-LB
ISO/ASTM WD 52926-3	Additive manufacturing — Qualification principles — Part 3: Qualification of ma- chine operators for metallic parts producton for PBF-EB
ISO/ASTM WD 52926-4	Additive manufacturing — Qualification principles — Part 4: Qualification of ma- chine operators for metallic parts production for DED-LB
ISO/ASTM WD 52926-5	Additive manufacturing — Qualification principles — Part 5: Qualification of ma- chine operators for metallic parts production for DED-Arc
ISO/ASTM WD TS 52930	Guideline for installation/ operation/ performance qualification (IQ/OQ/PQ) of laser-beam powder bed fusion equipment for production manufacturing
ISO/ASTM CD 52931	Additive manufacturing — Environmental health and safety — Standard guideline foruse of metallic materials
ISO/ASTM WD 52932	Additive manufacturing — Environmental health and safety — Standard test methodfor determination of particle emission rates from desktop 3D printers using material extrusion
ISO/ASTM WD 52933	Additive manufacturing — Environment, health and safety — Consideration for the reduction of hazardous substances emit- ted during the operation of the non-industrial ME type 3D printer in workplaces, andcorresponding test method

ISO/ASTM DIS 52941	Additive manufacturing — System performance and reliability — Standard test method for acceptance of powder-bed fusion machines for metallic materials for aerospace application
ISO/ASTM FDIS 52942	Additive manufacturing — Qualification principles — Qualifying machine operators of metal powder bed fusion machines and equipment used in aerospace applications
ISO/ASTM PWI 52943-1	Additive manufacturing — Process characteristics and performance — Part 1: Standard specification for directed energy deposition using wire and beam in aerospace applications
ISO/ASTM PWI 52943-2	Additive manufacturing — Process characteristics and performance — Part 2: Standard specification for directed energy deposition using wire and arc in aerospace applications
ISO/ASTM PWI 52943-3	Additive manufacturing — Process characteristics and performance — Part 3: Standard specification for directed energy deposition using laser blown powder in aerospace applications
ISO/ASTM PWI 52944	Additive manufacturing — Process characteristics and performance — Standard specification for powder bed processes in aerospace applications
ISO/ASTM 52904:2019	Additive manufacturing — Process characteristics and performance — Practice for metal powder bed fusion process to meet critical applications
ISO/ASTM 52902:2019	Additive manufacturing — Test artifacts —Geometric capability assessment of additive manufacturing systems

Se vuoi saperne di più partecipa al nostro webinar sul tema.

ISCRIVITI QUI

ISO/ASTM 52902:2019(E)

Additive manufacturing — Test artifacts — Geometric capability assessment of additive manufacturing systems¹

This standard is issued under the fixed designation ISO/ASTM 52902; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision.

