

# SFIDE E SOLUZIONI PER COMPONENTI DI VEICOLI ELETTRICI:

### BATTERIE E COMPONENTI PIU' SICURI, EFFICIENTI E DURATURI

Giacomo Parisi Global Marketing Director Auto Electrification

giacomo.parisi@dupont.com



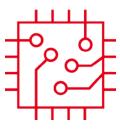


## **DuPont: Global premier multi-industrial**



### **Mobility & Materials**

- Advanced Solutions
- Engineering Polymers
- Performance Resins


\$4.0B



### **Water & Protection**

- Safety Solutions
- Shelter Solutions
- Water Solutions

\$5.0B



#### **Electronics & Industrial**

- Industrial Solutions
- Interconnect Solutions
- Semiconductor Technologies

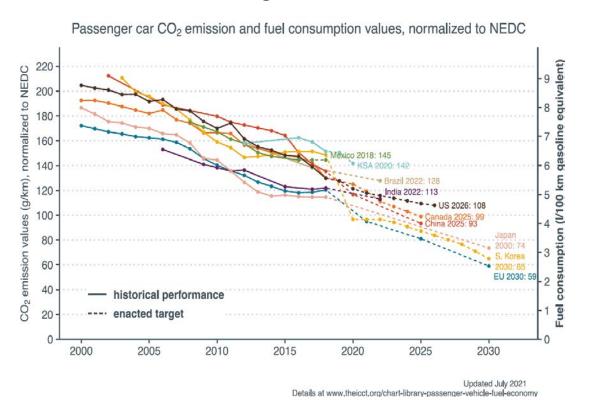
\$4.7B

**\$13.7B** 2020 net sales

23,000+ colleagues

40+ countries

~90
manufacturing
sites


10 major R&D centers

PLAST: DESIGN



### **Auto electrification market**

### Global Passenger Car & Light Vehicles Emission Legislation 2000 - 2030



### **Cost Parity: EV & ICE** TCO, more Regulatory, consumer choices, gov incentives, cost of battery infrastructure decline development 3% 5% 15% 31% 13% 17% 91% 72% 51% 2020 2025 2030

■ ICE + ICE Start/Stop + Hybrid Mild

BEV

■ Hybrid-Full



### Component and materials Challenges

**Component requirements** 



High (charging) power & high energy batteries

High power, high torque compact electric motors (15-200 kW)



**New fluids** 



Integration of components

High voltage

up to 1kV, up to 3kV testing voltage

### **Material requirements**

- Electrical properties (e.g. breakdown voltage, Comparative Tracking Index )
- UL listing, flame retardancy, nonhalogen
- Distinctive colour (orange)

- Temperature requirements (EIS classes, RTI-Relative Thermal Index, CUT)
- Chemical resistance (coolants, dielectric fluids, ATF)

- Good adhesion to metal (overmolding) and low CLTE
- Thermal conductivity
- Electrical conductivity (EMIshielding)



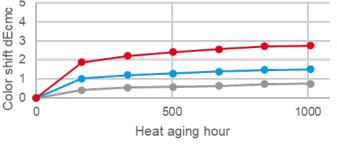


### Improving Durability of High Voltage Components

#### **APPLICATIONS**

- HV connectors & busbars
- HV relays & switches




### **REQUIREMENTS**

- Orange color stability for high voltage part identification over time and temperature
- Constant electrical properties over time and temperature, hydrolysis resistant
- Resistant to heat shocks and adhesion to conductors
- High comparative tracking index and non-halogen flame retardant formulations

### **SOLUTIONS**

Crastin® PBT FR Non Halogen , Zytel ® PA 66 FR Non Halogen







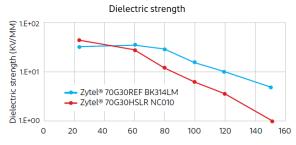




# **Preventing Electrolytic Corrosion of Insulation Parts**

#### **APPLICATIONS**

- HV & LV connectors & busbars
- Sensors, relays & switches




#### **REQUIREMENTS**

- Resistance in harsh environment: high voltage, humidity and temperature up to 180°C
- Low halide containing materials that extend component lifetime
- Laser-markable formulations that allow for part identification through QR and DMC codes
- Durability & Compatibility (ATF and e-motor immersion cooling fluids up to 150°C)

#### **SOLUTIONS**

Polyammide Electrically Friendly Portfolio Zytel PA66, Long Chain, HTN



200

200

2100

2100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

1100

11

Stress at Break after aging in Pentosin FFL2 at 150°C

plast PLAST: DESIGN



### Improving Durability of Seals & Gaskets

#### **APPLICATIONS**

- HV connectors sealings
- Power electronics and Battery sealings
- Transmission sealings

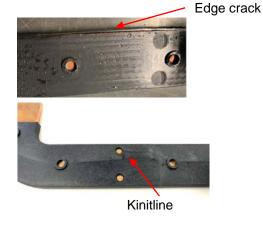


#### **REQUIREMENTS**

- Low compression set for durable sealing
- Compatible with ATF and e-motor immersion cooling fluids up to 150°C
- Compatible with battery immersion cooling fluids up to 100°C
- Compatible with flame-retardant non-halogen materials

#### **SOLUTIONS**

# Vamac® (AEM) amorphous ethylene / acrylic elastomer copolymer


- (A) Polar acrylic monomer responsible for good oil and lubricant resistance
- (E) Ethylene provides low temperature properties, responsible for good water- and acid-resistance
- (M) Saturated polymer chain for excellent thermal stability



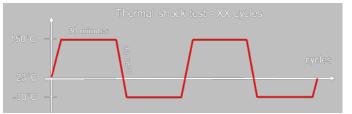


## Improving thermal shock resistance for Motor and Power Electronics





#### **Issue**


- Bus bars: conductors for electric system (multi or single phase overmolded)
- Unwanted cracks during life time (typical cycles:
   -40/-30°C to 150°C up to 1000 hrs
- Conditions becoming more critical with contact with dielectric oils and ATF

### **Approach**

- Application testing vs material testing
- Manufacturing of critical prototype and thermal chamber testing



Multiple gating scenarios
Over-molded copper insert
with different thicknesses: 1 to 3 mm







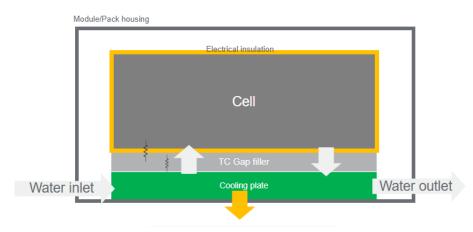
### Improving thermal shock resistance for Motor and PE

#### **Results**

- Specific Zytel HTN designed passing requirements
- Better than PPS impact modified grades

### **Key variables**

- Dimensional stability, CLTE
- Elongation at break, weldline strength and rigidity
- Type of fillers and type of PPA copolymer
- Metals type, Design & processing recommendations


| Grade                                | 72h | 96h | 168h | 240h | 336h | 384h | 432h | 480h | 540h | 630h | 702h | 846h | 990h | 1200h | Failure mode |
|--------------------------------------|-----|-----|------|------|------|------|------|------|------|------|------|------|------|-------|--------------|
| PA66 30%GF FR                        | 0   | 0   | 0    | 2    | 2    | 3    |      |      |      |      |      |      |      | -     | knitline     |
| Zytel HTN FR55G50NHLW - PPA 50GF% FR | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |              |
| PA66 30%GF                           | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 3     | knitline     |
| Zytel HTN 55G55TLW - PPA 50GF%       | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |              |
| Zytel HTN FR52G30NH -PPA 30GF% FR    | 0   | 3   |      |      |      |      |      |      |      |      |      |      |      | -     | knitline     |
| HTN 54G35EF BK420- PPA 35GF%         | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 3     | knitline     |
| PPS 40%GF                            | 0   | 0   | 0    | 3    |      |      |      |      |      |      |      |      |      | -     | edge crack   |
| PPS 50% GFMineral                    | 0   | 2   | 2    | 3    |      |      |      |      |      |      |      |      |      | -     | edge crack   |
| PPS 50% GFMineral IM                 | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1     | knitline     |







### Improving thermal thermal management for batteries



#### Issue

Unwanted heat dissipation through housing

→ Loss of heating performance

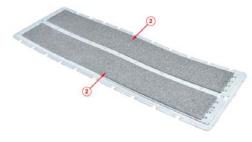
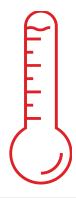




Photo courtesy of A2Mac1

### **Current market solution example**

Hyundai Kona – 10mm EPP foam between the bottom plate & casing



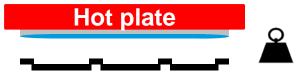
At <0°C, discharge power is reduced and charge capability disappears

Reduced range below 15°C

Ideal temperature range is actually quite narrow: 20°C~40°C

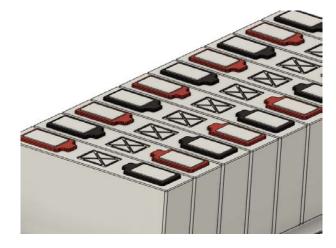





### Hybrid cooling plate concept



Aluminum plate with DuPont chemical bonding CB solution sprayed on the bottom surface


Plastic – metal bonding activated via hot plate welding

Alu plate with CB



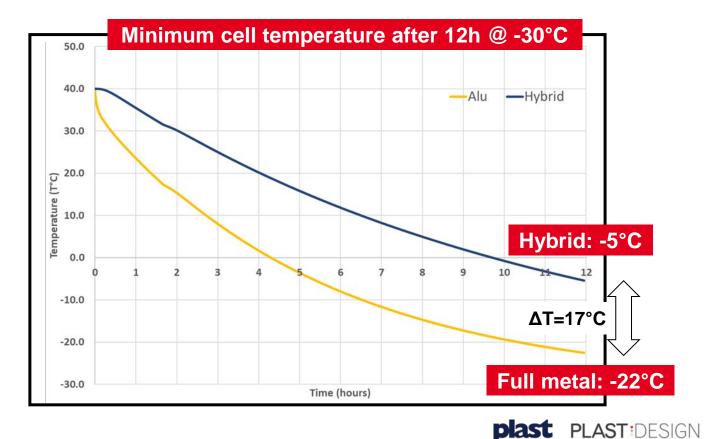
Plastic module

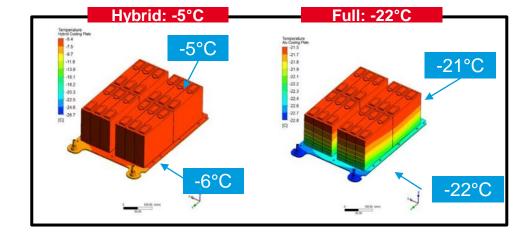




1. Prepare Samples

2. Assemble Cooling Module


3. Assemble Cells






### How much difference in heat retention

Vehicle parked overnight at -30°C – no fluid flowing through the channels Hybrid solution allows the cells to stay warmer





- Cycle time vs. brazing and Energy cost reduction for assembly
- Improvement in coolant turbulence from design flexibility of plastic
- Improvement in durability & performance of the cells
- Functions integration



### **Conclusions**

- Evolution of specifications from OEMs in Auto Electrification area means new material developments and new properties will require investigation
- DuPont Mobility& Materials supports customers with the development of new concepts and application re-design with:
  - CAE
  - Processing capabilities
  - Prototyping
  - Application testing capabilities
  - The Auto Electrification Center of Excellence