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Abstract: Autism spectrum disorder (ASD) is a heterogeneous condition, characterized by complex
genetic architectures and intertwined genetic/environmental interactions. Novel analysis
approaches to disentangle its pathophysiology by computing large amounts of data are needed. We
present an advanced machine learning technique, based on a clustering analysis on
genotypical/phenotypical embedding spaces, to identify biological processes that might act as
pathophysiological substrates for ASD. This technique was applied to the VariCarta database, which
contained 187,794 variant events retrieved from 15,189 individuals with ASD. Nine clusters of ASD-
related genes were identified. The 3 largest clusters included 68.6% of all individuals, consisting of
1455 (38.0%), 841 (21.9%), and 336 (8.7%) persons, respectively. Enrichment analysis was applied to
isolate clinically relevant ASD-associated biological processes. Two of the identified clusters were
characterized by individuals with an increased presence of variants linked to biological processes
and cellular components, such as axon growth and guidance, synaptic membrane components, or
transmission. The study also suggested other clusters with possible genotype-phenotype
associations. Innovative methodologies, including machine learning, can improve our
understanding of the underlying biological processes and gene variant networks that undergo the
etiology and pathogenic mechanisms of ASD. Future work to ascertain the reproducibility of the

presented methodology is warranted.

Keywords: Autism spectrum disorder (ASD); cluster analysis; gene networks; genotype—phenotype
embedding; machine learning; patient similarity analytics; neurite morphogenesis; connectivity;
neurobehavioral phenotypes; synapses; neurotransmission

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
deficits in social communication and interactions, and restrictive and repetitive patterns
of behavior or interests. Its estimated prevalence is 1 in 59 children [1]. ASD presents with
a substantial variability of clinical symptoms and a heterogeneous genetic architecture.
Only a handful of ASD-related diseases have monogenic causes. This is, for example, the
case of tuberous sclerosis complex (TSC), in which the dysregulation of the
neurotransmission of GABA, resulting from genetic mutations of the mTOR pathway, has
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been established to underlie the development of both epilepsy and ASD in these
individuals [2].

The disruption of different neurodevelopmental pathways associated with a
relatively high number of genes makes it difficult to disentangle the exact mechanisms
involved in ASD. Therefore, its genetic foundations still need to be further elucidated [3].
Nevertheless, progress in sequencing technology has improved the capability of
identifying possible ASD risk genes, such as synaptic activity-related genes [4-6] as well
as genes related to molecular regulatory systems [7-9], transcription and chromatin
modeling [10] [11], or the mTOR pathway [12]. Therefore, there is an urgent need to
identify ASD-associated biomarkers and features—such as endophenotypes—to support
diagnostics and to develop predictive ASD models [13].

Many approaches have been postulated to better understand these mechanisms.
Machine learning algorithms have been widely applied in diagnostic tools for ASD. For
example, Han adopted a novel evolutionary algorithm, the conjunctive clause
evolutionary algorithm (CCEA), to select major features to better characterize individuals
with ASD, thus demonstrating how machine learning tools might implement diagnostic
models in ASD [13]. Kwon and colleagues predicted ASD symptom severity utilizing the
fully automatic nodal feature extractor and the sparse hierarchical graph representation
framework to encode the brain’s functional connectivity [14]. Ruther et al. trained random
forest models on the Autism Diagnostic Observation Schedule (ADOS), a standardized
diagnostic test for diagnosing and assessing ASD, to predict a diagnosis of ASD, while
differentiating it from other neurodevelopmental disorders [15]. All these approaches
underline the increasing role of machine learning-based diagnostic classification in
improving clinical decisions.

Machine learning has shown its potential not only in the diagnostic field but also in
dissecting the wide genotypic-phenotypic heterogeneity of ASD and other
neurodevelopmental disorders (NDD). Chow and colleagues have used metabolite
annotation and gene integration (MAGI)-S, a computational method, to predict modules
or groups of highly connected genes that interact to perform similar biological functions
[16]. In this case, the aim was to disentangle the epilepsy phenotype from a more general
NDD phenotype. Similarly, Peng and colleagues prioritized two modules, enriched in
genes associated with both epilepsy and ASD, and coded the biological processes of ion
transmembrane transport and synaptic signaling, which may contribute to the shared
genetic etiology of epilepsy and ASD. One of the two modules was an epilepsy-focused
module enriched in genes directly causing epilepsy and epilepsy phenotypes; the other
one was an ASD-focused module enriched in genes related to ASD [3].

In a previous study we presented a methodology that made use of hierarchical-
agglomerative-clustering, heatmapping, and enrichment analysis [17]. We applied this
approach to a freely available database, VariCarta [18], to list and prioritize those
biological processes that occur in genetically related clusters of individuals with ASD. The
present study builds on more recent statistical and technical developments, with the aim
to identify and categorize biological processes that might act as possible
pathophysiological substrates for ASD. We propose here a machine learning based
approach, which uses genetic data retrieved from VariCarta to evaluate their possible
impact on specific ASD endophenotypic characteristics.

2. Materials and Methods
2.1. Methodological Overview

To identify genetical subtypes of individuals with autism we applied clustering on a
pure genetical embedding space, modified to include phenotypical information.

We began by collecting for each individual all the genes related to rare variants.
Thereafter, we created a subgroup based on the used sequencing type. We collected only
variants retrieved from whole-genome sequencing. We also excluded exome sequencing
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since it did not perform well neither on clustering in our previous research [17], nor using
the present approach based on pre-trained embedding. Then, we projected the gene set of
individuals into the genotypical/phenotypical embedding. For each individual we
obtained a single vector representation having 64 components. Subsequently, we applied
density-based clustering obtaining a set of nine clusters. From each cluster we extracted
the set of related genes and applied the enrichment analysis. We also applied some
additional analysis to evaluate the impact of the genes on a subset of phenotypes related
to ASD. The main elements of the entire process are depicted in Figure 1.
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Figure 1. Analysis Process. The image depicts the entire process adopted to identify potential
subgroups of individuals with ASD. For each individual included in the VariCarta database, the set
of variated genes is selected and then encoded using the genotypical/phenotypical embedding
space. Each individual is then represented with a 64-component vector in the
genotypical/phenotypical embedding space. Dimensionality reduction is applied to the encoded
individuals” matrix to reduce clustering complexity. The genes of the resulting clusters are then used
for the enrichment and endophenotype analysis.

2.2. Database

To conduct this research, we used the VariCarta dataset from British Columbia
University. It is a web-based database of human DNA genetic variants identified in
individuals with an ASD diagnosis. Since all the variants included in VariCarta are
collected from ASD genetics research literature, most of them are rare (present in < 5% of
the population) or very rare (< 1% of the population) and only a few are common ones.
This information was fundamental for the cluster analysis we carried out.

VariCarta was developed with the aim to identify rare, possibly causative, genomic
variants in individuals with ASD. To tackle this challenge, due to the genetic
heterogeneity of ASD, it is necessary to collect a wide variety of individual information
through the aggregation of data. This approach can potentially increase the risk of
methodological inconsistencies and individual overlaps across studies. VariCarta
developers addressed this demanding task by gathering and creating a catalog of
literature-derived genomic variants found in individuals with ASD, using an ongoing
semi-manual curation and with a robust data import pipeline. Curators, during the
continuous development of the database, could identify and correct errors, convert
variants into a standardized format, harmonize cohort overlaps, and document data
provenance. The VariCarta database is constantly updated with new relevant gene-
targeted scientific papers aligned with the ASD research community interests. The current
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version contains 187,794 variant events from 15,189 individuals, retrieved from 97 papers.
The version we used is the one released on May 18, 2022. It consists of 226,495 records,
each one containing a variant as reported in the paper from where it was retrieved. Since
a single variant belonging to a certain individual and reported in a paper can be reported
in other studies as well, we removed duplicated events during the analysis.

VariCarta dataset is accessible both using a web interface or downloading the whole
dataset in csv format. As the web interface allows limited research, we downloaded the
whole dataset in csv format. Each row of the dataset corresponds to a variant event which
includes, among other information, the symbol of the affected gene, the category of mu-
tation (synonymous SNV and nonsynonymous SNV, frameshift insertion, etc.), the
adopted sequencing type (whole genome sequencing, exome sequencing, targeted se-
quencing), and the individual id that is a unique identifier of the individual presenting
the mutation. The dataset also provides references to allow to trace the paper from which
the information was collected. Since the number of variants detected in each individual
might be affected by the used sequencing type, we handled only whole genome sequenc-
ing. In VariCarta the number of variants is revealed by targeted sequencing and exome
sequencing is composed, respectively, by 3.0% (5,805/187,794 variant events) and 14.1%
(26,486/187,794) of all variants. The subset we used related to whole-genome sequencing
and forms 84.1% (157,984/187,794 mutations) of all of VariCarta’s reported variants.

2.3. Genotypical Embedding Space Creation

The technique of using embeddings as a vectorial space to identify similarities be-
tween elements has been borrowed from the branch of machine learning called natural
language processing (NLP). The main insight of this approach is to convert elements
(words in this case) into vectors. Assuming that a corpus is composed by a certain number
of documents, a word vector can be defined as the number of occurrences of each word in
every document so that a word vector would be composed by a number for each docu-
ment. Since each document represents a dimension of the vectorial space, words having
occurrences in the same documents would be closer in the space. This basic approach is
called the “bag of words model” [19]. The idea behind the use of these NLP methods in
genetics is the replacement of the concept of word with the concept of gene and the crea-
tion of a vectorial space that can catch the semantics of “genes language”, i.e., their inter-
actions. In this case, genes interacting with each other should be close in the embedding
space.

We used the Gene2Vec [20] as our baseline gene embedding space. Gene2vec devel-
opers trained a 200-dimension vector representation of all human genes, using gene co-
expression patterns in 984 data sets from the GEO database [21] together with the Gene
Ontology [22] resource to identify interactions between genes according to the biological
processes they are involved in. These vectors capture functional relatedness of genes in
terms of recovering known pathways. Finally, Gensim Python library [23] was used to
load the pretrained Gene2Vec embedding and make the subsequent encoding operations.

2.4. Phenotypical Embedding Space Creation

To create an embedding space including phenotypical information we combined
Gene2Vec with Human Phenotype Ontology (HPO) [24] information (Figure 2). From the
HPO we extracted the lists of genes, each impacting on a specific phenotype. For each
phenotype, we then created a vector having a dimension for each gene present in the
Gene2Vec embedding space (24,447 components) so that every gene always occupies the
same dimension. The value of each dimension in a phenotype vector is then zero if the
gene is not related to the specific phenotype according to the HPO, otherwise it is equal
to the maximum of the 200 components representing the gene in Gene2Vec. The result is
a very sparse matrix having as many columns as the number of genes in Gene2Vec and as
many rows as the number of phenotypes in HPO. We used an autoencoder having 6 dense
layers of encoding and as many dense layers for decoding to reduce the dimensions to 64
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components [25]. From VariCarta’s dataset and for each of the individuals included in the
subset as defined before, we selected the two features “Gene Symbol” and “Individual id”
and generated a sequence of genes for each individual, grouping them by “Individual id”.
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Figure 2. Process adopted to generate Genotypical/Phenotypical Embeddings from Gene2Vec. The
process starts from a pre-existing embedding space for human genome that is Gene2Vec. Gene2Vec
captures all the semantics of the interactions between genes, meaning that two genes are close in the
embedding space if they have a mutual string interaction. For each phenotype in the HPO database
the set of characterizing genes is extracted and encoded using Gene2Vec. The encoding transforms
each gene into a 200-component vector. From the encoded phenotypes, a phenotypes/genes matrix
is composed, having as many columns as the number of genes and as many rows as the number of
phenotypes. Dimensionality reduction is applied using an autoencoder to reduce the initial 24,447
components to 64 components.

We encoded the sequence of genes using the encoder piece of the autoencoder (Fig-
ure 3) so that for each individual we obtained a single vector representation having 64
values. The outcoming matrix of the encoded individuals was used for the subsequent
clustering step.
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Figure 3. Base structure of a Deep Autoencoder for dimensionality reduction. The autoencoder is a
deep learning structure usually composed of an encoder component and a subsequent decoder com-
ponent. To generate a representation of some data X in the form of an embedding, the autoencoder
is trained to reproduce X. This means that the loss of the training is computed between the decoder
output X’ and the input X. The purpose is to reproduce an output that is as similar as possible to the
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input. Once this goal is reached with the desired level of accuracy, it means that the decoder can
properly reproduce the data from the encoder representation z, which is usually a lower dimension
version of the input data X.

2.5. Dimensionality Reduction and Clustering

Dimensionality reduction has been applied to the resulting matrix using uniform
manifold approximation and projection (UMAP) for dimension reduction [26]. It allowed
the reduction in the dimensions from 64 to 5 to make the computation of the clustering
possible. UMAP is an evolution of t-stochastic neighbor embedding (t-SNE) [27] and it is
used to obtain a dimensionality reduction that preserves the relative distances between
elements (and then their eventual clusters’ structures) going from the original embedding
space to the lower dimensional space. The use of UMAP in bioinformatics, particularly in
genetics, is not new and it is mainly focused on visualizing multidimensional spaces
[28,29].

Finally, the individuals were clustered using hierarchical density-based spatial clus-
tering of applications with noise (HDBSCAN) clustering [30]. On top of our knowledge,
HDBSCAN and its not-hierarchical version, called DBSCAN [31], have not been used yet
for subtyping individuals with ASD based on genetic variants. To date, the clustering al-
gorithms which are mainly used are agglomerative clustering (bottom-up hierarchical
clustering) and K-means [32]. Nevertheless, researchers are beginning to use it in ASD for
clustering, based on other features, such as electro-encephalography (EEG) scans [33].

In HDBSCAN, as in other clustering algorithms, the selection hyperparameters play
a key role in achieving a high-quality outcome. To select the best hyperparameters, we
applied exact grid search cross validation to the following hyperparameters:

* min_cluster_size: the minimum number of samples a cluster should have. This pa-
rameter determines the threshold for a set of samples to be considered as noise.

* metric: the metric used to measure the distance between samples in the vectorial
space. We considered ‘Euclidean” and ‘Manhattan’.

¢ min_samples: the number of neighbors a sample should be close to consider it a
cluster sample.

® cluster_selection_method: the way the clusters are selected in the hierarchy of clus-
ters generated by the algorithm.

To evaluate the clustering results in the cross-validation, we used density-based clus-
tering validation (DBCV) [34]. Another index we considered was the coverage, defined as
the ratio between the number of samples belonging to the cluster and the total number of
samples. This index provides a clue about the “clusterability” of the data. A low coverage
means that most of the samples are marked as noise. A 100% coverage means that no
sample has been marked as noise.

2.6. Enrichment Analysis and Additional Analyses

Once we identified the set of genes characterizing each cluster of individuals with
ASD, we applied to each cluster the enrichment analysis, a methodology used to identify
classes of genes or proteins that are over-represented in a large set of genes or proteins
and may be associated with specific phenotypes. The analysis was conducted using the
Gene Ontology annotation tool (GOAT) [35], a Python library used to simplify the anno-
tation of gene products with terms from the Gene Ontology project. To identify signifi-
cantly enriched or depleted groups of genes, we compared the input gene set with each
of the bins (terms) in the GOAT. The results for each pathway are expressed in terms of
fold enrichment (FE), i.e., the ratio between the number of genes in the cluster list belong-
ing to the specific pathway, and the number of genes expected to belong to the pathway
in a randomly selected set of genes of the same size. For each gene set we collected the
related biological processes, cellular components, and molecular functions. To evaluate
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the impact of each gene set on phenotypes related to ASD included in the HPO we com-
puted the FE between them and the gene set characterizing each phenotype according to
the HPO.

Finally, the gene variants included in the resulting clusters were compared with the
human genes associated with ASD, which were retrieved from the Simons Foundation
Autism Research Initiative database (SFARI Gene) [36,37]. SFARI Gene is a developing
database focusing on genes related to ASD susceptibility (https://gene.sfari.org/), whose
data are derived from sources that are in the public domain. Specifically, the Human Gene
module of SFARI Gene can be considered an updated reference for known human genes
associated with ASD (https://gene.sfari.org/database/human-gene/)(Accessed: January 11,
2023). As of November 2022, the SFARI Gene database contained 1,052 genes identified as
being ASD-linked.

A conservative statistical significance threshold of p <0.005 (two tailed) was applied
for all analyses. We applied the false discovery rate (FDR) using Fisher’s exact test and the
Benjamini-Hochberg [38] procedure to control for multiple comparisons. As both raw and
FDR-adjusted p-values are strongly dependent on sample size, once the statistically sig-
nificant terms were identified, we ranked the biological processes by fold enrichment,
which, in this context, can be considered a measure of effect size [39].

3. Results
3.1. Clustering Analysis

Before applying the clustering, we applied UMAP dimensionality reduction. The fol-
lowing hyperparameters were used:

. n_neighbors = 15;

o n_components = 5;

. Metric = ‘cosine’ distance.

Applying the exact grid search cross validation to HDBSCAN we achieved a cover-
age of 100% (maximum coverage, i.e., “no noise”) and a DBCV of 0.83. As DBCV ranges
from -1 to +1, such a DBCV-value can be considered as high. The metric used in cross-
validation is only DBCV so that the full coverage was a good “side-effect” of the optimi-
zation. The identified best-fitting hyperparameters were:

. Min_cluster_size: 105;

. Metric: “‘Manhattan’ distance;

. Min_samples: 10;

o Cluster_selection_method: ‘eom’ (excess of mass).

The total number of individuals belonging to the whole-genome sequencing type
group was 3,823. The algorithm identified 9 clusters with the largest cluster (cluster 0)
including 1,455 individuals, while the smallest one (cluster 4) included 106 individuals.
The number of variants ranged from 492 (cluster 4) to 17,217 (cluster 0). We then created
an intersection between the variants identified in each cluster and the genes that—accord-
ing to SFARI Gene —are considered ASD-linked. In Table 1, we present the overall results,
including the total number of variants and the ASD-linked genes comprised in each clus-
ter. We also enumerated each identified gene variant included in the different clusters and
associated it with the corresponding biological pathways and possible ASD phenotype.
The extensive register is presented in Table S1.

Table 1. Number of individuals, genetic variants, and ASD-linked genes included in each cluster.

CLUSTER INDEX INDIVIDUALS VARIANTS ASD-LINKED GENES*
0 1,455 17,217 879
1 841 1,747 154
2 273 7,509 516
3 110 558 49
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106 492 41
214 944 96
334 1,859 188
336 5,296 410
154 1,186 117

-20

=30

*Based on data contained within SFARI Gene as of November 2022. The nine clusters determined
by the algorithm are presented according to three characteristics: number of individuals, number of
variants, and number of variants, which, according to SFARI Gene, are considered ASD-linked. An
additional table in the Supplementary Materials shows the full list of gene variants and of ASD-
linked genes included in each cluster, as well as biological pathways and phenotypes related to
these variants (Table S1).

To visualize in two dimensions the results arising from the clustering, we further
applied UMAP, which reduced the components to two. Figure 4 shows how the nine clus-
ters are distributed into the two-dimensional space.

AN

=1

Figure 4. HDBSCAN clustering. This image shows the distribution of the clusters in the embedding
space. The original embedding space including 64 dimensions was compressed into 2 dimensions
using the UMAP algorithm to allow 2-dimensional visualization. Each one of the nine clusters is
labelled using a distinct color.

Additional information related to the density of each cluster in the space is provided
by Figure 5. The chart, called a joint plot, looks like an elevation map.
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Figure 5. Joint Plot and density distribution of the clusters. Like an elevation map, the joint plot
shows the local density of each cluster. The two plots on the two axes show the decomposition of
the density into the two dimensions used for visualization. The dimensionality reduction from 64
to 2 dimensions was obtained using the UMAP algorithm.

The condensed tree of the clustering, presented in Figure 6, provides an overview of
the behavior of the clustering algorithm. The results of the HDBSCAN are usually strongly
influenced by the radius used to bound the density analysis. In the non-hierarchical ver-
sion of the algorithm, called DBSCAN, the radius must be provided by the user, and it is
called the epsilon. It is defined as the maximum distance between two samples, where one
sample is considered as being in the neighborhood of the other. In HDBSCAN, the epsilon
is not fixed but it is changed by the algorithm to create the cluster's hierarchy.

l 3500
3000
2500
2000
1500
1000
500

Figure 6. Condensed tree. The condensed tree provides a view of the behavior of the clustering
algorithm. In the ordinate, the parameter lambda represents the inverse of epsilon, defined as the
maximum distance between two samples, where one sample is considered as being in the neighbor-
hood of the other. The root of the hierarchy is where the value of lambda is small, which means that
the epsilon distance is wide. In this area, the identified clusters are larger since the definition of
neighbor is wider. Once lambda increases and epsilon decreases, the clusters are sliced into smaller
clusters. Usually, a robust clustering is considered the one that persists despite the large variations
of lambda. The clusters circled in red are the nine ones selected by the algorithm and are the ones
with higher persistence.

Number of points
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3.2. Enrichment Analysis

We used the set of genes of each cluster for the enrichment analysis. Clusters 4 and 5
did not return any result with an FDR < 0.005. Cluster 0 returned several statistically sig-
nificant results, but all fold enrichments were <1.5. For completeness, in Table 2 we pre-
sent the first 20 results from cluster 0, ordered by FDR value. Cluster 1 presented only one
result with FE > 1.5 (Table 3). From Table 4-8 we present the other results ordered by fold
enrichment (with FE > 1.5).

Table 2. Enrichment Analysis for Cluster 0.

GO element type
molecular_function
cellular_component
cellular_component
cellular_component
molecular_function
molecular_function
cellular_component
cellular_component
cellular_component
cellular_component
cellular_component

molecular_function

cellular_component

biological_process

cellular_component
molecular_function

molecular_function
cellular_component
biological_process

cellular_component

GO code GO name FE FDR
GO:0005515 Protein binding 1.087222547 1.55 x 10-°
GO:0005886 Plasma membrane 1.147275591 2.24 x 10
GO:0005737 Cytoplasm 1.130739139 4.92 x 104
GO:0005829 Cytosol 1.121747304 5.30 x 10-4
GO:0005524 ATP binding 1.224015929 2.82 x 103
GO:0046872 Metal ion binding 1.161264333 4.55 x 10»
GO:0005654 Nucleoplasm 1.116129667 2.34 x 10
GO:0000786 Nucleosome 0.299454744 3.29 x 10
GO:0005634 Nucleus 1.083234714 1.05 x 102
GO:0005794 Golgi apparatus 1.20614718 1.76 x 10-%
GO:0016020 Membrane 1.128252261 6.39 x 107

Protein serine/threo-
GO:0004712 nine/tyrosine kinase ac- 1.290737468 1.18 x 101
tivity
Intracellular mem-
GO:0043231 brane-bounded orga- 1.198508723 3.19 x 10-16
nelle
GO:0006334 Nucleosome assembly 0.373973889 5.38 x 10-16
GO:0005887 Integral component of 1.148641895 1.45 x 10414
plasma membrane
GO:0004674 Protein serine/threo- 129806618 169 x 104
nine kinase activity
GO:0106310 Protein serine kinase 1.294450396 2.73 x 101
activity
GO:0098978 Glutamatergic synapse 1.297368237 2.94 x 1013
GO:0006468 Protein pt}i‘g’sphoryla' 1.250748447 3.98 x 103
GO:0030424 Axon 1.289923348 7.28 x 1013

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. Results with FDR < 0.005 and FE < 1.5 are shown. Results, ranked
by FDR, are shown up to the 20th value. An additional table in the Supplementary Materials shows
a full list of the 286 biological processes, molecular functions, and cellular components (Table S2).
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Table 3. Enrichment Analysis for Cluster 1.

GO code GO name FE FDR
GO:0005886 1.246675801 1.52 x 10+

FE: fold enrichment; FDR: false discovery rate p-value. Biological processes, molecular functions,
and cellular _components are identified by their reference numbers (GO:XXXXXX) in Gene Ontol-
ogy. A single result with FDR < 0.005 and FE <1.5 was obtained. An additional table in the Supple-
mentary Materials shows a list of the 3 molecular functions and cellular components (Table S2).

GO element type

cellular_component Plasma membrane

Table 4. Enrichment Analysis for Cluster 2.

GO element type GO code GO name FE FDR
biological_process GO:0006939 Smooth muscle contraction 2.82253091 4.97 x 103
Transmembrane receptor
molecular_function GO:0005001 protein tyrosine phosphatase 2.82253091 2.50 x 103
activity
cellular_component GO:0016342 Catenin complex 2.763999163 8.48 x 107
Transmitter-gated ion chan-
molecular_function GO:1904315 nel activity involved in regu- 2.520116883 5.00 x 105
lation of postsynaptic mem-
brane potential
R lati f t ti
biological_process GO:0060078 eguation of postsynaptie 2513396572 6.85 x 10+
membrane potential
cellular_component GO:0044295 Axonal growth cone 2.492624699 1.75 x 103
Cell—cell adhesion via
biological_process GO:0098742 plasma-membrane adhesion 2.408414405 3.11x 10+
molecules
molecular_function GO:0043325 Phosphatidylinositol-3,4- 2.363695836 279 x 10
bisphosphate binding
Integral component of
cellular_component GO:0099061 postsynaptic density mem- 2.150499741 1.16 x 10
brane
cellular_component GO:0098839 POStsynapt;Cr:jenmy e 2.089853025 2,01 x10°
biological_process GO:0050804 Modulation of chemical syn- 2.068233856 1.14 % 10
aptic transmission
Regulation of small GTPase-
biological_process GO:0051056 egulation of small GTPase 1.996809134 533 x 107
mediated signal transduction
molecular_function GO:0008013 [-catenin binding 1.992650559 1.82 x 105
cellular_component GO:0031594 Neuromuscular junction 1.965691169 1.29 x 10+
cellular_component GO:0098982 GABA-ergic synapse 1.943875232 1.98 x 10+
cellular_component GO:0042734 Presynaptic membrane 1.924131347 1.54 x 103
biological_process GO:0043087 Regulation Oif;TPase activ- 1904088312 7.68 %104
biological_process GO:0007411 Axon guidance 1.792469342 6.04 x 107
biological_process GO:0006470 Protein dephosphorylation 1.771967898 3.42 x 105
cellular_component GO:0045211 Postsynaptic membrane 1764081818 9.26 x 10
cellular_component GO:0098685 Schaffer C(’Hz;esrjl " CALsyns 1761281689 345 x10°
cellular_component GO:0098978 Glutamatergic synapse 1.713679481 3.42 x 1012
cellular_component GO:0042383 Sarcolemma 1660679084 3.34 x 103
molecular_function GO:0017124 SH3 domain binding 1.658399498 2.01 x 103
biological_process GO:0009887 Animal Orga;:m’rph"gene' 1.65020987 270 x 103
biological_process GO:0007420 Brain development 1.628703639 4.48 x 10
cellular_component GO:0005938 Cell cortex 1.626910899 1.29 x 10+
biological_process G0O:0098609 Cell—cell adhesion 1.608369569 5.42 x 10+
cellular_component GO:0005912 Adherens junction 1603442789 1.16 x 10+
1 nucleoti h
molecular_function GO:0005085 Guanyl nucleotide exchange 1.591273804 2.63x 105
factor activity
cellular_component GO:0014069 Postsynaptic density 1.58515352 4.25 x 10
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biological_process

cellular_component
cellular_component
cellular_component
biological_process

cellular_component
cellular_component
cellular_component
cellular_component
molecular_function

biological_process

molecular_function

Chemical synaptic transmis-

G0:0007268 sion 1.574355946 4.57 x10°
G0:0030054 Cell junction 1.556385229 7.80 x 105
G0:0030424 Axon 1.555005455 1.13 x 107
GO:0043005 Neuron projection 1.550471911 1.13 x 107
GO:0016477 Cell migration 1.545671689 1.07 x 10+
G0:0043197 Dendritic spine 1.54344642 2.41 %103
G0:0042995 Cell projection 1.542311533 3.45 =% 103
GO:0045202 Synapse 1.525092744 7.81 x 10
GO:0030425 Dendrite 1.511341422 2.49 x 108
GO0:0005516 Calmodulin binding 1.508037943 2.77 x 103
GO:0007399 Nervous system develop- 1502114113 457 %105
ment
G0:0031267 Small GTPase binding 1.501876399 1.15 x 10+

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. Results with FE > 1.5 and FDR < 0.005 are selected and ranked by
FE. An additional table in the Supplementary Materials shows a full list of the 149 biological pro-
cesses, molecular functions, and cellular components (Table S2).

Table 5. Enrichment Analysis for Cluster 3.

GO element type

cellular_component

GO code GO name FE FDR
GO:0032391 Phomreceg;ﬁfriomedmg 8.843272901 1.02 x 103

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. A single result with FE > 1.5 and FDR < 0.005 is shown. An addi-
tional table in the Supplementary Materials shows a list of the cellular components (Table S2).

Table 6. Enrichment Analysis for Cluster 6.

GO element type
molecular_function
cellular_component
molecular_function
cellular_component

GO code GO name FE FDR
GO:0005516 Calmodulin binding 2.394767442 9.63 x 10+
GO:0030424 Axon 1.983969128 2.02 x 108
GO:0005524 ATP binding 1.548471524 1.05 x 10
GO:0005886 Plasma membrane 1.271435899 5.21 x 106

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. Three results with FE > 1.5 and FDR < 0.005 are shown. An addi-
tional table in the Supplementary Materials shows a full list of the 12 biological processes, molecular
functions, and cellular components (Table S2).

Table 7. Enrichment Analysis for Cluster 7.

GO element type
molecular_function
biological_process

molecular_function

molecular_function

cellular_component

biological_process

GO code GO name FE FDR
GO:0008066 Glutamate receptor ac- 418111949 210 x 105
tivity
GO:0007413 Axonal fasciculation 3.520942728 2.12 x 103
GO:0098632 Cell-cell adhesion me- 3.185614849 2.38 x 10+
diator activity
GO:0050840 Extracellular matrix 3.026334107 3.24 x 10+
binding
GO:0016342 Catenin complex 2.774567772 1.13x 103
Modulation of chemi-
GO:0050804 cal synaptic transmis- 2.553984319 3.06 x 10+

sion
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cellular_component
cellular_component

biological_process

biological_process

biological_process
cellular_component

molecular_function
molecular_function

cellular_component

biological_process

molecular_function
molecular_function
molecular_function
cellular_component
cellular_component
biological_process

molecular_function

GO:0099061

GO:0005912

GO:0051056

GO:0018108

GO:0007411
GO:0030424

GO:0005201
GO:0008017

GO:0045211

GO:0007156

GO:0051015
GO:0005516
GO:0003779
GO:0098978
GO:0043235
GO:0007420

GO:0005096

Integral component of
postsynaptic density
membrane
Adherents junction
Regulation of small
GTPase-mediated sig-
nal transduction
Peptidyl-tyrosine phos-
phorylation
Axon guidance
Axon
Extracellular matrix
structural constituent
Microtubule binding
Postsynaptic mem-
brane
Homophilic cell adhe-
sion via plasma mem-
brane adhesion mole-
cules
Actin filament binding
Calmodulin binding
Actin binding
Glutamatergic synapse
Receptor complex
Brain development

GTPase activator activ-
ity

2.248669305

2.123743233

1.994471906

1.978565473

1.894891591
1.858275329

1.848586719
1.810574065

1.791908353

1.784711934

1.73356715
1.720232019
1.719508015
1.643533776
1.637052075

1.61913482

1.598663334

3.79 x 103

2.53 x 10°

1.25 x 103

6.13 x 10+

2.12 x 104
9.42 x 101

9.09 x 10+
1.12 x 10

1.55 x 10

2.12x 103

1.40 x 10+
3.71 x 104
1.91 x 10
8.85 x 10
8.44 x 10+
492 x 103

5.70 x 10+

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. Results with FE > 1.5 and FDR < 0.005 are selected and ranked by
FE. An additional table in the Supplementary Materials shows a full list of the 90 biological pro-
cesses, molecular functions, and cellular components (Table S2).

Table 8. Enrichment Analysis for Cluster 8.

GO element type
molecular_function

molecular_function

GO code

GO:0004712

GO:0005524

GO name
Protein serine/threo-

nine/tyrosine kinase ac-

tivity
ATP binding

FE

2.162900762

1.716714944

FDR

1.88 x 10

1.24 x 10°

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p-value. Biological processes,
molecular functions, and cellular components are identified by their reference numbers
(GO:XXXXXX) in Gene Ontology. Two results with FE > 1.5 and FDR < 0.005 are selected and ranked
by FE. An additional table in the Supplementary Materials shows a full list of the 7 biological pro-
cesses and molecular functions (Table S2).

Finally, to evaluate the impact of each cluster on the HPO phenotypes related to ASD,
we computed the FE between the set of genes belonging to each cluster and the genes
related to the phenotype in HPO. The results are presented in Table 9, where we show all
the phenotypes with FE > 1.0. Cluster 1 is not present since no FE was above 1.0.
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Table 9. Phenotype Fold Enrichment by Cluster.

Cluster /
Phenotype
Restrictive

behavior
Impaired

social
interactions

Poor eye

contact

Lack of

peer
relationshi
ps
Restrictive
behavior
Impaired
ability to
form peer
relationshi
ps
Abnormal
non-verbal
communica
tive
behavior

1.05

1.20

1.20

2 3 4 5 6 7 8
1.22 233 1.23 1.93
1.16 1.12 3.81 1.32 201 1.18

1.55 1.15 1.40 2.56
165 416 . 1.17 1.74
1.23
1.83 13.95
1.10 8.37

FE: fold enrichment. Genes belonging to each cluster and the genes related to the phenotype in HPO.
Results are shown ranked by fold enrichment. An additional table in the Supplementary Materials
shows the full list of phenotypes of interest (Table S3).

4. Discussion

Autism spectrum disorder (ASD) is a clinically heterogeneous neurodevelopmental
disorder. The clinical heterogeneity of ASD appears to be closely mirrored by the large
variety of ASD-related genes. The genetic architecture of ASD is extremely complex, and
it is still an active area of research. Important advancements in the discovery of various
molecular mechanisms underlying the genetics of autism and the identification of new
ASD risk genes have opened new ways to study the pathophysiology of this disorder [40].

Numerous studies have already highlighted the role of different ASD risk genes con-
verging in many biological processes related to various cellular functions, such as gene
transcription and translation regulation processes, as well as neuronal activity modula-
tion, synaptic plasticity, disrupted key biological signaling pathways, and ion channels
[41,42].

Recent advances in ASD understanding have pointed out the role of genotype—phe-
notype approaches in disentangling the biological bases of the disorder [43]. Indeed, most
of the ASD-associated genes can be functionally classified into specific molecular path-
ways, but it is still a matter of speculation how molecular pathway alterations could affect
ASD phenotypes. For example, mouse models have shown how specific abnormal path-
ways could impact behavioral phenotypes. In mouse models of ASD as well as in clinical
neuroscience, behavioral phenotypes, such as impaired social interactions or stereotyped
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behaviors have been associated with neural circuit dysfunctions and abnormal molecular
pathways [44,45]. Similarly, to take another example, our study identified the presence of
variants of the CAPRIN1 gene in several clusters, associating it with different biological
pathways. CAPRIN 1 was previously related to carcinogenesis [46] and also—in mouse
studies— to brain activity and reduced social interaction phenotypes [47]. More recently,
loss-of-function variants in this gene have been associated with a neurodevelopmental
phenotype presenting, among other characteristics, with language impairment, ADHD,
and ASD [48].1t is, therefore, noteworthy to underline that understanding the linkage be-
tween ASD genotypes and phenotypes may help to achieve proper diagnosis, predict
prognosis, and individualize precision therapy [49].

ASD is likely the result of a complex interaction of factors rather than the conse-
quence of a single factor driving the system. As such, traditional sequencing tools that
search for univariate drivers of ASD are unlikely to find consistent patterns. Otherwise,
machine learning techniques that explore large search spaces for multivariate interactions
are becoming popular in helping to elucidate the complex interactions in systems such as
in ASD [13]. Therefore, machine learning approaches have been consistently used as tools
for examination, stratification in disease severity, and differential diagnosis in ASD and
other neurodevelopmental disorders [13-15], as well as for genotype-phenotype studies
[3].

Building upon our previous study [17], in this research we used the VariCarta data-
base to identify genetical subgroups of individuals with ASD, applying a novel machine
learning approach based on a clustering analysis on a modified embedding space. We
obtained different clusters of ASD-related genes and extracted from each cluster the set of
related genes. Then, we applied the enrichment analysis to the genes to emphasize crucial
biological processes associated with ASD. Finally, we performed an additional analysis to
evaluate the impact of these genes on a subset of phenotypes related to ASD.

4.1. Cluster Comparisons

Among the nine retrieved gene clusters, two appeared to be of higher clinical rele-
vance (Cluster numbers 2 and 7). Here, biological processes and cellular components re-
lated to synaptic communication, such as axon growth and guidance, pre- and post-syn-
aptic membrane components, modulation of chemical synaptic transmission, and post-
synaptic density play a fundamental role. These pathways have already been associated
with ASD pathogenesis [10,50,51], including in our previous study [17]. Particularly inter-
esting is the fact that some of the processes enriched in Cluster 2 also have a possible direct
clinical relevance in terms of phenotypes, as the phenotype fold enrichment per cluster
highlighted. This is the case of the CA1 and GABA synapses, which appear to be involved
in social interaction difficulties. Indeed, Schaffer collateral-CA1 synapses, potentially
linked to hippocampal abnormalities, are crucial for social development and implicated
even in autism/epilepsy comorbidity [52]. Regarding GABAergic synapses, the disturb-
ance of the delicate balance between excitation and inhibition in the developing brain pro-
foundly impacts neurobehavioral phenotypes. Analogously, GABA receptor polymor-
phisms are associated with deficits in social interaction and in sensorimotor and soma-
tosensory coordination, visual response, imitation, and adaptability [53,54].

Even the other clusters have shown some possible interesting genotype—phenotype
associations. In Cluster 3, for example, the enrichment analysis has put the spotlight on
photoreceptor connecting cilium: there is evidence of an altered retinal function in ASD
mouse models [55], with consequent atypical visual processing [56]; thus, we can hypoth-
esize a possible association with eye contact deficits due to an impairment of visual sen-
sory processes in ASD, as our phenotype fold enrichment per cluster also suggested.

In Cluster 6, as well as in Cluster 8, ATP binding was pinpointed as a process of
interest. According to the literature, mutations in the ATP-binding cassette subfamily A
member 13 (ABCA13) have been studied in monkey models for ASD, showing repetitive
behaviors [57]. Drosophila models for ASD also showed deficits in social interactions [58].
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Both these ASD clinical features have been highlighted by larger fold enrichments in these
clusters.

We also compared the number of variants included in each cluster with the number
of genes classified by the existing literature as ASD linked. It was not surprising to detect
a difference in terms of numbers. In fact, genetic variants identified in an individual or in
a group of individuals might be occasional and not necessarily a factor related to the dis-
order. At the same time, such a difference might also call for the need of studying not only
genes but also gene networks and gene interactions as possible ASD causative factors.
This is why a key element of this research is the use of a novel machine learning method-
ology to identify genetic subgroups of individuals with ASD, giving resonance to specific
biological processes among different ASD phenotypes. It was used in this study particu-
larly to search for possible links between genetic networks and endophenotypes.

4.2. Translation into Clinical Research

In this study, we implemented patient similarity analysis, which was built upon our
earlier work [17] by using a new metric. We used patient similarity algorithms considering
that these can play a crucial role in identifying subpopulations of individuals with ASD
who could share the same etiopathology. Based on genetic traits or biological activities,
molecular processes, and cellular components [59], the identification of subgroups of in-
dividuals can be further enhanced. After completing the subgroup categorization process,
it is possible to assess the membership of each individual in a particular group by analyz-
ing their distance from the other subgroups. These methods might also help in determin-
ing which of the many genetic variations that define ASD [60] play a leading role in con-
tributing to its etiopathology and clinical implications. Additionally, improved ap-
proaches could make it possible to distinguish between variations influencing ASD and
those influencing other neurodevelopmental disorders.

In the current study, we did not consider targeted analysis sequencing because this
technique focuses on the identification of specific genes highly related to a disease, assum-
ing that these are known. However, this assumption can only be made in the case of well-
documented “syndromic” ASD, such as, among many others, tuberous sclerosis, Fragile
X syndrome, Rubinstein-Taybi syndrome, or Phelan-McDermid syndrome [61-63]. Yet,
about 85% of all ASD diagnoses are represented by “idiopathic ASD” [64], which might
be associated, e.g., with factors such as neuroinflammation, autoimmunity, or metabolic
disorders [65-67]. Therefore, limiting the analysis to a few genes, while ignoring others
could lead to reduced detection of relevant gene variants in a single individual.

4.3. Limitations

Several limitations should be kept in mind when interpreting our findings. First off,
we did not conduct the same research on a sample of people without ASD, as VariCarta
does not include data about these individuals. This restriction does not allow to distin-
guish between de novo mutations and those found in the genomes of the biological par-
ents [50]. Likewise, population stratification analysis was not feasible since VariCarta does
not disclose any information about age, gender, ethnicity, family relationships, or other
personal characteristics of the included individuals. Furthermore, VariCarta does not in-
clude details on each person’s homozygous/heterozygous status. Hence, the variability of
the impacts of the variations connected to this characteristic could not be evaluated in the
current analysis, even though, given the design of this study, the absence of this infor-
mation would have probably had a negligible effect on the results. A further limitation,
related to the characteristics of the used dataset, concerns the inability to remove common
variants and evaluate variant deleteriousness in the cluster analysis. However, from anal-
yses conducted in our previous work [17], this appears to be a minor limitation. It must
be emphasized that we used a database that excluded environmental or epigenetic varia-
bles, restricting the classification of the subgroups exclusively to genetic variant events.
Additionally, all variations were included in the study; there was no selection based on
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variation nature (base substitution, deletion, or insertion), category of nucleotide varia-
tion, or category of sequence variation (exonic or intronic). Even though the variations
included in VariCarta were obtained from published controlled studies where the variant
was related with ASD, it is possible that not at all genetic variants were implicated in ASD.
Finally, even though the proposed methodology allowed us to assess the impact of vari-
ants on a subset of phenotypes related to ASD and epilepsy, and preliminary assessments
conducted on the clusters were found in the literature for some possible genotype—phe-
notype associations, the absence in the dataset of the description of each phenotype, in-
cluding gender and IQ, did not allow us to confirm our clustering results.

In conclusion, since ASD is a multigenic and highly heterogeneous condition, inno-
vative methodologies, including machine learning and newly developed biomedical in-
formatics, can improve our understanding of the underlying biological processes that un-
dergo the etiology and the pathogenic mechanisms of ASD and may identify more homo-
geneous subgroups of individuals with ASD. Due to the complex architecture of ASD,
similarity analysis and machine learning might be helpful in forecasting developmental
trajectories [68], offering therapeutic decision assistance [69], and customizing individual
therapies [70]. The methodology experimented here in the context of ASD could also be a
promising tool for the study of other disorders. Nonetheless, further research comparing
the identified biological processes, the shared genetic pathways, and the convergent en-
dophenotypes with associated phenotypes will be necessary to confirm the clinical valid-
ity and usefulness of our results.

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-
cle/10.3390/genes14020313/s1, Table S1: List of gene variants included in each cluster; list of ASD-
linked genes and related biological pathways and phenotypes (xls 6.69 kb). Table S2: List of occur-
rences of gene variations retrieved by the analysis and corresponding biological processes, molecu-
lar functions, and cellular components for each cluster. The tables include the number of reference
genes, the fold enrichment values, and FDR p-values for each biological process of the nine clusters
(xIs 57 kb). Table S3: List of phenotypes retrieved by the fold enrichment analysis (xls 22 kb).
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