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Abstract: Autism spectrum disorder (ASD) is a heterogeneous condition, characterized by complex 

genetic  architectures  and  intertwined  genetic/environmental  interactions.  Novel  analysis 

approaches to disentangle its pathophysiology by computing large amounts of data are needed. We 

present  an  advanced  machine  learning  technique,  based  on  a  clustering  analysis  on 

genotypical/phenotypical  embedding  spaces,  to  identify  biological  processes  that might  act  as 

pathophysiological substrates for ASD. This technique was applied to the VariCarta database, which 

contained 187,794 variant events retrieved from 15,189 individuals with ASD. Nine clusters of ASD‐

related genes were identified. The 3 largest clusters included 68.6% of all individuals, consisting of 

1455 (38.0%), 841 (21.9%), and 336 (8.7%) persons, respectively. Enrichment analysis was applied to 

isolate clinically relevant ASD‐associated biological processes. Two of the identified clusters were 

characterized by individuals with an increased presence of variants linked to biological processes 

and cellular components, such as axon growth and guidance, synaptic membrane components, or 

transmission.  The  study  also  suggested  other  clusters  with  possible  genotype–phenotype 

associations.  Innovative  methodologies,  including  machine  learning,  can  improve  our 

understanding of the underlying biological processes and gene variant networks that undergo the 

etiology and pathogenic mechanisms of ASD. Future work to ascertain the reproducibility of the 

presented methodology is warranted. 

Keywords: Autism spectrum disorder (ASD); cluster analysis; gene networks; genotype–phenotype 

embedding; machine  learning; patient  similarity  analytics; neurite morphogenesis;  connectivity; 

neurobehavioral phenotypes; synapses; neurotransmission 

 

1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

deficits in social communication and interactions, and restrictive and repetitive patterns 

of behavior or interests. Its estimated prevalence is 1 in 59 children [1]. ASD presents with 

a substantial variability of clinical symptoms and a heterogeneous genetic architecture. 

Only a handful of ASD‐related diseases have monogenic causes. This is, for example, the 

case  of  tuberous  sclerosis  complex  (TSC),  in  which  the  dysregulation  of  the 

neurotransmission of GABA, resulting from genetic mutations of the mTOR pathway, has 
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been  established  to  underlie  the  development  of  both  epilepsy  and  ASD  in  these 

individuals [2].   

The  disruption  of  different  neurodevelopmental  pathways  associated  with  a 

relatively high number of genes makes it difficult to disentangle the exact mechanisms 

involved in ASD. Therefore, its genetic foundations still need to be further elucidated [3]. 

Nevertheless,  progress  in  sequencing  technology  has  improved  the  capability  of 

identifying possible ASD risk genes, such as synaptic activity‐related genes [4–6] as well 

as  genes  related  to molecular  regulatory  systems  [7–9],  transcription  and  chromatin 

modeling  [10]  [11], or  the mTOR pathway  [12]. Therefore,  there  is  an urgent need  to 

identify ASD‐associated biomarkers and features—such as endophenotypes—to support 

diagnostics and to develop predictive ASD models [13]. 

Many  approaches  have  been  postulated  to  better  understand  these mechanisms. 

Machine learning algorithms have been widely applied in diagnostic tools for ASD. For 

example,  Han  adopted  a  novel  evolutionary  algorithm,  the  conjunctive  clause 

evolutionary algorithm (CCEA), to select major features to better characterize individuals 

with ASD, thus demonstrating how machine learning tools might implement diagnostic 

models in ASD [13]. Kwon and colleagues predicted ASD symptom severity utilizing the 

fully automatic nodal feature extractor and the sparse hierarchical graph representation 

framework to encode the brain’s functional connectivity [14]. Ruther et al. trained random 

forest models on the Autism Diagnostic Observation Schedule  (ADOS), a standardized 

diagnostic test for diagnosing and assessing ASD, to predict a diagnosis of ASD, while 

differentiating  it  from  other neurodevelopmental disorders  [15]. All  these  approaches 

underline  the  increasing  role  of  machine  learning‐based  diagnostic  classification  in 

improving clinical decisions.   

Machine learning has shown its potential not only in the diagnostic field but also in 

dissecting  the  wide  genotypic–phenotypic  heterogeneity  of  ASD  and  other 

neurodevelopmental  disorders  (NDD).  Chow  and  colleagues  have  used  metabolite 

annotation and gene integration (MAGI)‐S, a computational method, to predict modules 

or groups of highly connected genes that interact to perform similar biological functions 

[16]. In this case, the aim was to disentangle the epilepsy phenotype from a more general 

NDD phenotype. Similarly, Peng and colleagues prioritized  two modules, enriched  in 

genes associated with both epilepsy and ASD, and coded the biological processes of ion 

transmembrane  transport and  synaptic  signaling, which may  contribute  to  the  shared 

genetic etiology of epilepsy and ASD. One of the two modules was an epilepsy‐focused 

module enriched in genes directly causing epilepsy and epilepsy phenotypes; the other 

one was an ASD‐focused module enriched in genes related to ASD [3].   

In  a previous  study we presented  a methodology  that made use  of  hierarchical‐

agglomerative‐clustering, heatmapping, and enrichment analysis  [17]. We applied  this 

approach  to  a  freely  available  database,  VariCarta  [18],  to  list  and  prioritize  those 

biological processes that occur in genetically related clusters of individuals with ASD. The 

present study builds on more recent statistical and technical developments, with the aim 

to  identify  and  categorize  biological  processes  that  might  act  as  possible 

pathophysiological  substrates  for  ASD. We  propose  here  a  machine  learning  based 

approach, which uses genetic data  retrieved  from VariCarta  to evaluate  their possible 

impact on specific ASD endophenotypic characteristics. 

2. Materials and Methods 

2.1. Methodological Overview 

To identify genetical subtypes of individuals with autism we applied clustering on a 

pure genetical embedding space, modified to include phenotypical information. 

We began by  collecting  for  each  individual  all  the genes  related  to  rare variants. 

Thereafter, we created a subgroup based on the used sequencing type. We collected only 

variants retrieved from whole‐genome sequencing. We also excluded exome sequencing 
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since it did not perform well neither on clustering in our previous research [17], nor using 

the present approach based on pre‐trained embedding. Then, we projected the gene set of 

individuals  into  the  genotypical/phenotypical  embedding.  For  each  individual  we 

obtained a single vector representation having 64 components. Subsequently, we applied 

density‐based clustering obtaining a set of nine clusters. From each cluster we extracted 

the  set  of  related  genes  and  applied  the  enrichment  analysis. We  also  applied  some 

additional analysis to evaluate the impact of the genes on a subset of phenotypes related 

to ASD. The main elements of the entire process are depicted in Figure 1. 

 

Figure  1. Analysis  Process.  The  image  depicts  the  entire  process  adopted  to  identify  potential 

subgroups of individuals with ASD. For each individual included in the VariCarta database, the set 

of  variated  genes  is  selected  and  then  encoded  using  the  genotypical/phenotypical  embedding 

space.  Each  individual  is  then  represented  with  a  64‐component  vector  in  the 

genotypical/phenotypical embedding space. Dimensionality  reduction  is applied  to  the encoded 

individuals’ matrix to reduce clustering complexity. The genes of the resulting clusters are then used 

for the enrichment and endophenotype analysis. 

2.2. Database 

To  conduct  this  research, we  used  the VariCarta  dataset  from  British  Columbia 

University.  It  is  a web‐based  database  of  human DNA  genetic  variants  identified  in 

individuals with  an ASD  diagnosis.  Since  all  the  variants  included  in  VariCarta  are 

collected from ASD genetics research literature, most of them are rare (present in < 5% of 

the population) or very rare (< 1% of the population) and only a few are common ones. 

This information was fundamental for the cluster analysis we carried out.   

VariCarta was developed with the aim to identify rare, possibly causative, genomic 

variants  in  individuals  with  ASD.  To  tackle  this  challenge,  due  to  the  genetic 

heterogeneity of ASD, it is necessary to collect a wide variety of individual information 

through  the  aggregation  of  data.  This  approach  can  potentially  increase  the  risk  of 

methodological  inconsistencies  and  individual  overlaps  across  studies.  VariCarta 

developers  addressed  this  demanding  task  by  gathering  and  creating  a  catalog  of 

literature‐derived genomic variants  found  in  individuals with ASD, using an ongoing 

semi‐manual  curation  and with  a  robust  data  import  pipeline.  Curators,  during  the 

continuous  development  of  the  database,  could  identify  and  correct  errors,  convert 

variants  into  a  standardized  format,  harmonize  cohort  overlaps,  and  document  data 

provenance.  The  VariCarta  database  is  constantly  updated with  new  relevant  gene‐

targeted scientific papers aligned with the ASD research community interests. The current 
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version contains 187,794 variant events from 15,189 individuals, retrieved from 97 papers. 

The version we used is the one released on May 18, 2022. It consists of 226,495 records, 

each one containing a variant as reported in the paper from where it was retrieved. Since 

a single variant belonging to a certain individual and reported in a paper can be reported 

in other studies as well, we removed duplicated events during the analysis.   

VariCarta dataset is accessible both using a web interface or downloading the whole 

dataset in csv format. As the web interface allows limited research, we downloaded the 

whole dataset in csv format. Each row of the dataset corresponds to a variant event which 

includes, among other information, the symbol of the affected gene, the category of mu‐

tation  (synonymous  SNV  and  nonsynonymous  SNV,  frameshift  insertion,  etc.),  the 

adopted  sequencing  type  (whole genome  sequencing,  exome  sequencing,  targeted  se‐

quencing), and the individual id that is a unique identifier of the individual presenting 

the mutation. The dataset also provides references to allow to trace the paper from which 

the information was collected. Since the number of variants detected in each individual 

might be affected by the used sequencing type, we handled only whole genome sequenc‐

ing. In VariCarta the number of variants is revealed by targeted sequencing and exome 

sequencing is composed, respectively, by 3.0% (5,805/187,794 variant events) and 14.1% 

(26,486/187,794) of all variants. The subset we used related to whole‐genome sequencing 

and forms 84.1% (157,984/187,794 mutations) of all of VariCarta’s reported variants. 

2.3. Genotypical Embedding Space Creation   

The technique of using embeddings as a vectorial space to identify similarities be‐

tween elements has been borrowed from the branch of machine learning called natural 

language processing  (NLP). The main  insight of  this  approach  is  to  convert  elements 

(words in this case) into vectors. Assuming that a corpus is composed by a certain number 

of documents, a word vector can be defined as the number of occurrences of each word in 

every document so that a word vector would be composed by a number for each docu‐

ment. Since each document represents a dimension of the vectorial space, words having 

occurrences in the same documents would be closer in the space. This basic approach is 

called the “bag of words model” [19]. The idea behind the use of these NLP methods in 

genetics is the replacement of the concept of word with the concept of gene and the crea‐

tion of a vectorial space that can catch the semantics of “genes language”, i.e., their inter‐

actions. In this case, genes interacting with each other should be close in the embedding 

space. 

We used the Gene2Vec [20] as our baseline gene embedding space. Gene2vec devel‐

opers trained a 200‐dimension vector representation of all human genes, using gene co‐

expression patterns in 984 data sets from the GEO database [21] together with the Gene 

Ontology [22] resource to identify interactions between genes according to the biological 

processes they are involved in. These vectors capture functional relatedness of genes in 

terms of recovering known pathways. Finally, Gensim Python  library [23] was used to 

load the pretrained Gene2Vec embedding and make the subsequent encoding operations. 

2.4. Phenotypical Embedding Space Creation 

To  create  an  embedding  space  including phenotypical  information we  combined 

Gene2Vec with Human Phenotype Ontology (HPO) [24] information (Figure 2). From the 

HPO we extracted  the  lists of genes, each  impacting on a specific phenotype. For each 

phenotype, we  then created a vector having a dimension  for each gene present  in  the 

Gene2Vec embedding space (24,447 components) so that every gene always occupies the 

same dimension. The value of each dimension in a phenotype vector is then zero if the 

gene is not related to the specific phenotype according to the HPO, otherwise it is equal 

to the maximum of the 200 components representing the gene in Gene2Vec. The result is 

a very sparse matrix having as many columns as the number of genes in Gene2Vec and as 

many rows as the number of phenotypes in HPO. We used an autoencoder having 6 dense 

layers of encoding and as many dense layers for decoding to reduce the dimensions to 64 
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components [25]. From VariCarta’s dataset and for each of the individuals included in the 

subset as defined before, we selected the two features “Gene Symbol” and “Individual id” 

and generated a sequence of genes for each individual, grouping them by “Individual id”. 

 

Figure 2. Process adopted to generate Genotypical/Phenotypical Embeddings from Gene2Vec. The 

process starts from a pre‐existing embedding space for human genome that is Gene2Vec. Gene2Vec 

captures all the semantics of the interactions between genes, meaning that two genes are close in the 

embedding space if they have a mutual string interaction. For each phenotype in the HPO database 

the set of characterizing genes is extracted and encoded using Gene2Vec. The encoding transforms 

each gene into a 200‐component vector. From the encoded phenotypes, a phenotypes/genes matrix 

is composed, having as many columns as the number of genes and as many rows as the number of 

phenotypes. Dimensionality reduction is applied using an autoencoder to reduce the initial 24,447 

components to 64 components. 

We encoded the sequence of genes using the encoder piece of the autoencoder (Fig‐

ure 3) so that for each individual we obtained a single vector representation having 64 

values. The outcoming matrix of the encoded  individuals was used for the subsequent 

clustering step. 

 

Figure 3. Base structure of a Deep Autoencoder for dimensionality reduction. The autoencoder is a 

deep learning structure usually composed of an encoder component and a subsequent decoder com‐

ponent. To generate a representation of some data X in the form of an embedding, the autoencoder 

is trained to reproduce X. This means that the loss of the training is computed between the decoder 

output X’ and the input X. The purpose is to reproduce an output that is as similar as possible to the 
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input. Once this goal is reached with the desired level of accuracy, it means that the decoder can 

properly reproduce the data from the encoder representation z, which is usually a lower dimension 

version of the input data X. 

2.5. Dimensionality Reduction and Clustering   

Dimensionality  reduction has been applied  to  the  resulting matrix using uniform 

manifold approximation and projection (UMAP) for dimension reduction [26]. It allowed 

the reduction in the dimensions from 64 to 5 to make the computation of the clustering 

possible. UMAP is an evolution of t‐stochastic neighbor embedding (t‐SNE) [27] and it is 

used to obtain a dimensionality reduction that preserves the relative distances between 

elements (and then their eventual clusters’ structures) going from the original embedding 

space to the lower dimensional space. The use of UMAP in bioinformatics, particularly in 

genetics,  is  not  new  and  it  is mainly  focused  on  visualizing multidimensional  spaces 

[28,29]. 

Finally, the individuals were clustered using hierarchical density‐based spatial clus‐

tering of applications with noise (HDBSCAN) clustering [30]. On top of our knowledge, 

HDBSCAN and its not‐hierarchical version, called DBSCAN [31], have not been used yet 

for subtyping individuals with ASD based on genetic variants. To date, the clustering al‐

gorithms which  are mainly used  are agglomerative  clustering  (bottom‐up hierarchical 

clustering) and K‐means [32]. Nevertheless, researchers are beginning to use it in ASD for 

clustering, based on other features, such as electro‐encephalography (EEG) scans [33]. 

In HDBSCAN, as in other clustering algorithms, the selection hyperparameters play 

a key role in achieving a high‐quality outcome. To select the best hyperparameters, we 

applied exact grid search cross validation to the following hyperparameters: 

•  min_cluster_size: the minimum number of samples a cluster should have. This pa‐

rameter determines the threshold for a set of samples to be considered as noise. 

•  metric: the metric used to measure the distance between samples in the vectorial 

space. We considered ‘Euclidean’ and ‘Manhattan’. 

•  min_samples: the number of neighbors a sample should be close to consider  it a 

cluster sample.   

•  cluster_selection_method: the way the clusters are selected in the hierarchy of clus‐

ters generated by the algorithm.   

To evaluate the clustering results in the cross‐validation, we used density‐based clus‐

tering validation (DBCV) [34]. Another index we considered was the coverage, defined as 

the ratio between the number of samples belonging to the cluster and the total number of 

samples. This index provides a clue about the “clusterability” of the data. A low coverage 

means  that most of  the samples are marked as noise. A 100% coverage means  that no 

sample has been marked as noise. 

2.6. Enrichment Analysis and Additional Analyses 

Once we identified the set of genes characterizing each cluster of individuals with 

ASD, we applied to each cluster the enrichment analysis, a methodology used to identify 

classes of genes or proteins that are over‐represented in a large set of genes or proteins 

and may be associated with specific phenotypes. The analysis was conducted using the 

Gene Ontology annotation tool (GOAT) [35], a Python library used to simplify the anno‐

tation of gene products with terms from the Gene Ontology project. To identify signifi‐

cantly enriched or depleted groups of genes, we compared the input gene set with each 

of the bins (terms) in the GOAT. The results for each pathway are expressed in terms of 

fold enrichment (FE), i.e., the ratio between the number of genes in the cluster list belong‐

ing to the specific pathway, and the number of genes expected to belong to the pathway 

in a randomly selected set of genes of the same size. For each gene set we collected the 

related biological processes, cellular components, and molecular functions. To evaluate 
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the impact of each gene set on phenotypes related to ASD included in the HPO we com‐

puted the FE between them and the gene set characterizing each phenotype according to 

the HPO. 

Finally, the gene variants included in the resulting clusters were compared with the 

human genes associated with ASD, which were retrieved  from  the Simons Foundation 

Autism Research Initiative database (SFARI Gene) [36,37]. SFARI Gene  is a developing 

database focusing on genes related to ASD susceptibility (https://gene.sfari.org/), whose 

data are derived from sources that are in the public domain. Specifically, the Human Gene 

module of SFARI Gene can be considered an updated reference for known human genes 

associated with ASD (https://gene.sfari.org/database/human‐gene/)(Accessed: January 11, 

2023). As of November 2022, the SFARI Gene database contained 1,052 genes identified as 

being ASD‐linked. 

A conservative statistical significance threshold of p < 0.005 (two tailed) was applied 

for all analyses. We applied the false discovery rate (FDR) using Fisher’s exact test and the 

Benjamini–Hochberg [38] procedure to control for multiple comparisons. As both raw and 

FDR‐adjusted p‐values are strongly dependent on sample size, once the statistically sig‐

nificant  terms were  identified, we  ranked  the biological processes by  fold enrichment, 

which, in this context, can be considered a measure of effect size [39]. 

3. Results 

3.1. Clustering Analysis   

Before applying the clustering, we applied UMAP dimensionality reduction. The fol‐

lowing hyperparameters were used: 

•  n_neighbors = 15; 

•  n_components = 5; 

•  Metric = ‘cosine’ distance. 

Applying the exact grid search cross validation to HDBSCAN we achieved a cover‐

age of 100% (maximum coverage, i.e., “no noise”) and a DBCV of 0.83. As DBCV ranges 

from ‐1 to +1, such a DBCV‐value can be considered as high. The metric used in cross‐

validation is only DBCV so that the full coverage was a good “side‐effect” of the optimi‐

zation. The identified best‐fitting hyperparameters were:   

•  Min_cluster_size: 105; 

•  Metric: ‘Manhattan’ distance; 

•  Min_samples: 10; 

•  Cluster_selection_method: ‘eom’ (excess of mass). 

The  total number of  individuals belonging  to  the whole‐genome  sequencing  type 

group was 3,823. The algorithm  identified 9 clusters with  the  largest cluster  (cluster 0) 

including 1,455 individuals, while the smallest one (cluster 4) included 106 individuals. 

The number of variants ranged from 492 (cluster 4) to 17,217 (cluster 0). We then created 

an intersection between the variants identified in each cluster and the genes that—accord‐

ing to SFARI Gene—are considered ASD‐linked. In Table 1, we present the overall results, 

including the total number of variants and the ASD‐linked genes comprised in each clus‐

ter. We also enumerated each identified gene variant included in the different clusters and 

associated it with the corresponding biological pathways and possible ASD phenotype. 

The extensive register is presented in Table S1. 

Table 1. Number of individuals, genetic variants, and ASD‐linked genes included in each cluster. 

CLUSTER INDEX  INDIVIDUALS  VARIANTS  ASD‐LINKED GENES* 

0  1,455  17,217  879 

1  841  1,747  154 

2  273  7,509  516 

3  110  558  49 
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4  106  492  41 

5  214  944  96 

6  334  1,859  188 

7  336  5,296  410 

8  154  1,186  117 

*Based on data contained within SFARI Gene as of November 2022. The nine clusters determined 

by the algorithm are presented according to three characteristics: number of individuals, number of 

variants, and number of variants, which, according to SFARI Gene, are considered ASD‐linked. An 

additional  table  in the Supplementary Materials shows  the full  list of gene variants and of ASD‐

linked genes  included  in each cluster, as well as biological pathways and phenotypes  related  to 

these variants (Table S1). 

To visualize  in  two dimensions  the  results arising  from  the clustering, we  further 

applied UMAP, which reduced the components to two. Figure 4 shows how the nine clus‐

ters are distributed into the two‐dimensional space. 

 

Figure 4. HDBSCAN clustering. This image shows the distribution of the clusters in the embedding 

space. The original embedding space including 64 dimensions was compressed into 2 dimensions 

using the UMAP algorithm to allow 2‐dimensional visualization. Each one of the nine clusters  is 

labelled using a distinct color. 

Additional information related to the density of each cluster in the space is provided 

by Figure 5. The chart, called a joint plot, looks like an elevation map.   
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Figure 5. Joint Plot and density distribution of  the clusters. Like an elevation map,  the  joint plot 

shows the local density of each cluster. The two plots on the two axes show the decomposition of 

the density into the two dimensions used for visualization. The dimensionality reduction from 64 

to 2 dimensions was obtained using the UMAP algorithm. 

The condensed tree of the clustering, presented in Figure 6, provides an overview of 

the behavior of the clustering algorithm. The results of the HDBSCAN are usually strongly 

influenced by the radius used to bound the density analysis. In the non‐hierarchical ver‐

sion of the algorithm, called DBSCAN, the radius must be provided by the user, and it is 

called the epsilon. It is defined as the maximum distance between two samples, where one 

sample is considered as being in the neighborhood of the other. In HDBSCAN, the epsilon 

is not fixed but it is changed by the algorithm to create the clusterʹs hierarchy.   

 

Figure 6. Condensed  tree. The condensed  tree provides a view of  the behavior of  the clustering 

algorithm. In the ordinate, the parameter lambda represents the inverse of epsilon, defined as the 

maximum distance between two samples, where one sample is considered as being in the neighbor‐

hood of the other. The root of the hierarchy is where the value of lambda is small, which means that 

the epsilon distance  is wide.  In  this area,  the  identified clusters are  larger since  the definition of 

neighbor is wider. Once lambda increases and epsilon decreases, the clusters are sliced into smaller 

clusters. Usually, a robust clustering is considered the one that persists despite the large variations 

of lambda. The clusters circled in red are the nine ones selected by the algorithm and are the ones 

with higher persistence. 
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3.2. Enrichment Analysis   

We used the set of genes of each cluster for the enrichment analysis. Clusters 4 and 5 

did not return any result with an FDR < 0.005. Cluster 0 returned several statistically sig‐

nificant results, but all fold enrichments were <1.5. For completeness, in Table 2 we pre‐

sent the first 20 results from cluster 0, ordered by FDR value. Cluster 1 presented only one 

result with FE > 1.5 (Table 3). From Table 4–8 we present the other results ordered by fold 

enrichment (with FE > 1.5). 

Table 2. Enrichment Analysis for Cluster 0. 

GO element type  GO code  GO name  FE  FDR 

molecular_function  GO:0005515  Protein binding  1.087222547  1.55 × 10‐99 

cellular_component  GO:0005886  Plasma membrane  1.147275591  2.24 × 10‐55 

cellular_component  GO:0005737  Cytoplasm  1.130739139  4.92 × 10‐47 

cellular_component  GO:0005829  Cytosol  1.121747304  5.30 × 10‐46 

molecular_function  GO:0005524  ATP binding  1.224015929  2.82 × 10‐35 

molecular_function  GO:0046872  Metal ion binding  1.161264333  4.55 × 10‐29 

cellular_component  GO:0005654  Nucleoplasm  1.116129667  2.34 × 10‐27 

cellular_component  GO:0000786  Nucleosome  0.299454744  3.29 × 10‐25 

cellular_component  GO:0005634  Nucleus  1.083234714  1.05 × 10‐21 

cellular_component  GO:0005794  Golgi apparatus  1.20614718  1.76 × 10‐20 

cellular_component  GO:0016020  Membrane  1.128252261  6.39 × 10‐17 

molecular_function  GO:0004712 

Protein serine/threo‐

nine/tyrosine kinase ac‐

tivity 

1.290737468  1.18 × 10‐16 

cellular_component  GO:0043231 

Intracellular mem‐

brane‐bounded orga‐

nelle 

1.198508723  3.19 × 10‐16 

biological_process  GO:0006334  Nucleosome assembly  0.373973889  5.38 × 10‐16 

cellular_component  GO:0005887 
Integral component of 

plasma membrane 
1.148641895  1.45 × 10‐14 

molecular_function  GO:0004674 
Protein serine/threo‐

nine kinase activity 
1.29806618  1.69 × 10‐14 

molecular_function  GO:0106310 
Protein serine kinase 

activity 
1.294450396  2.73 × 10‐14 

cellular_component  GO:0098978  Glutamatergic synapse  1.297368237  2.94 × 10‐13 

biological_process  GO:0006468 
Protein phosphoryla‐

tion 
1.250748447  3.98 × 10‐13 

cellular_component  GO:0030424  Axon  1.289923348  7.28 × 10‐13 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. Results with FDR < 0.005 and FE < 1.5 are shown. Results, ranked 

by FDR, are shown up to the 20th value. An additional table in the Supplementary Materials shows 

a full list of the 286 biological processes, molecular functions, and cellular components (Table S2). 
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Table 3. Enrichment Analysis for Cluster 1. 

GO element type  GO code  GO name  FE  FDR 

cellular_component  GO:0005886  Plasma membrane  1.246675801  1.52 × 10‐4 

FE: fold enrichment; FDR: false discovery rate p‐value. Biological processes, molecular functions, 

and cellular _components are identified by their reference numbers (GO:XXXXXX) in Gene Ontol‐

ogy. A single result with FDR < 0.005 and FE <1.5 was obtained. An additional table in the Supple‐

mentary Materials shows a list of the 3 molecular functions and cellular components (Table S2). 

Table 4. Enrichment Analysis for Cluster 2. 

GO element type  GO code  GO name  FE  FDR 

biological_process  GO:0006939  Smooth muscle contraction  2.82253091  4.97 × 10‐3 

molecular_function  GO:0005001 

Transmembrane receptor 

protein tyrosine phosphatase 

activity 

2.82253091  2.50 × 10‐3 

cellular_component  GO:0016342  Catenin complex  2.763999163  8.48 × 10‐7 

molecular_function  GO:1904315 

Transmitter‐gated ion chan‐

nel activity involved in regu‐

lation of postsynaptic mem‐

brane potential 

2.520116883  5.00 × 10‐5 

biological_process  GO:0060078 
Regulation of postsynaptic 

membrane potential 
2.513396572  6.85 × 10‐4 

cellular_component  GO:0044295  Axonal growth cone  2.492624699  1.75 × 10‐3 

biological_process  GO:0098742 

Cell–cell adhesion via 

plasma‐membrane adhesion 

molecules 

2.408414405  3.11 × 10‐4 

molecular_function  GO:0043325 
Phosphatidylinositol‐3,4‐

bisphosphate binding 
2.363695836  2.79 × 10‐3 

cellular_component  GO:0099061 

Integral component of 

postsynaptic density mem‐

brane 

2.150499741  1.16 × 10‐4 

cellular_component  GO:0098839 
Postsynaptic density mem‐

brane 
2.089853025  2.01 × 10‐3 

biological_process  GO:0050804 
Modulation of chemical syn‐

aptic transmission 
2.068233856  1.14 × 10‐3 

biological_process  GO:0051056 
Regulation of small GTPase‐

mediated signal transduction 
1.996809134  5.33 × 10‐7 

molecular_function  GO:0008013  β‐catenin binding  1.992650559  1.82 × 10‐5 

cellular_component  GO:0031594  Neuromuscular junction  1.965691169  1.29 × 10‐4 

cellular_component  GO:0098982  GABA‐ergic synapse  1.943875232  1.98 × 10‐4 

cellular_component  GO:0042734  Presynaptic membrane  1.924131347  1.54 × 10‐3 

biological_process  GO:0043087 
Regulation of GTPase activ‐

ity 
1.904088312  7.68 × 10‐4 

biological_process  GO:0007411  Axon guidance  1.792469342  6.04 × 10‐7 

biological_process  GO:0006470  Protein dephosphorylation  1.771967898  3.42 × 10‐5 

cellular_component  GO:0045211  Postsynaptic membrane  1.764081818  9.26 × 10‐6 

cellular_component  GO:0098685 
Schaffer collateral ‐ CA1 syn‐

apse 
1.761281689  3.45 × 10‐3 

cellular_component  GO:0098978  Glutamatergic synapse  1.713679481  3.42 × 10‐12 

cellular_component  GO:0042383  Sarcolemma  1.660679084  3.34 × 10‐3 

molecular_function  GO:0017124  SH3 domain binding  1.658399498  2.01 × 10‐3 

biological_process  GO:0009887 
Animal organ morphogene‐

sis 
1.65020987  2.70 × 10‐3 

biological_process  GO:0007420  Brain development  1.628703639  4.48 × 10‐6 

cellular_component  GO:0005938  Cell cortex  1.626910899  1.29 × 10‐4 

biological_process  GO:0098609  Cell–cell adhesion  1.608369569  5.42 × 10‐4 

cellular_component  GO:0005912  Adherens junction  1.603442789  1.16 × 10‐4 

molecular_function  GO:0005085 
Guanyl nucleotide exchange 

factor activity 
1.591273804  2.63 × 10‐5 

cellular_component  GO:0014069  Postsynaptic density  1.58515352  4.25 × 10‐6 
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biological_process  GO:0007268 
Chemical synaptic transmis‐

sion 
1.574355946  4.57 × 10‐5 

cellular_component  GO:0030054  Cell junction  1.556385229  7.80 × 10‐5 

cellular_component  GO:0030424  Axon  1.555005455  1.13 × 10‐7 

cellular_component  GO:0043005  Neuron projection  1.550471911  1.13 × 10‐7 

biological_process  GO:0016477  Cell migration  1.545671689  1.07 × 10‐4 

cellular_component  GO:0043197  Dendritic spine  1.54344642  2.41 × 10‐3 

cellular_component  GO:0042995  Cell projection  1.542311533  3.45 × 10‐3 

cellular_component  GO:0045202  Synapse  1.525092744  7.81 × 10‐9 

cellular_component  GO:0030425  Dendrite  1.511341422  2.49 × 10‐8 

molecular_function  GO:0005516  Calmodulin binding  1.508037943  2.77 × 10‐3 

biological_process  GO:0007399 
Nervous system develop‐

ment 
1.502114113  4.57 × 10‐5 

molecular_function  GO:0031267  Small GTPase binding  1.501876399  1.15 × 10‐4 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. Results with FE ≥ 1.5 and FDR < 0.005 are selected and ranked by 

FE. An additional table in the Supplementary Materials shows a full list of the 149 biological pro‐

cesses, molecular functions, and cellular components (Table S2). 

Table 5. Enrichment Analysis for Cluster 3. 

GO element type  GO code  GO name  FE  FDR 

cellular_component  GO:0032391 
Photoreceptor connecting 

cilium 
8.843272901  1.02 × 10‐3 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. A single result with FE ≥ 1.5 and FDR < 0.005 is shown. An addi‐

tional table in the Supplementary Materials shows a list of the cellular components (Table S2). 

Table 6. Enrichment Analysis for Cluster 6. 

GO element type  GO code  GO name  FE  FDR 

molecular_function  GO:0005516  Calmodulin binding  2.394767442  9.63 × 10‐4 

cellular_component  GO:0030424  Axon  1.983969128  2.02 × 10‐3 

molecular_function  GO:0005524  ATP binding  1.548471524  1.05 × 10‐5 

cellular_component  GO:0005886  Plasma membrane  1.271435899  5.21 × 10‐6 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. Three results with FE ≥ 1.5 and FDR < 0.005 are shown. An addi‐

tional table in the Supplementary Materials shows a full list of the 12 biological processes, molecular 

functions, and cellular components (Table S2). 

Table 7. Enrichment Analysis for Cluster 7. 

GO element type  GO code  GO name  FE  FDR 

molecular_function  GO:0008066 
Glutamate receptor ac‐

tivity 
4.18111949  2.10 × 10‐5 

biological_process  GO:0007413  Axonal fasciculation  3.520942728  2.12 × 10‐3 

molecular_function  GO:0098632 
Cell–cell adhesion me‐

diator activity 
3.185614849  2.38 × 10‐4 

molecular_function  GO:0050840 
Extracellular matrix 

binding 
3.026334107  3.24 × 10‐4 

cellular_component  GO:0016342  Catenin complex  2.774567772  1.13 × 10‐3 

biological_process  GO:0050804 

Modulation of chemi‐

cal synaptic transmis‐

sion 

2.553984319  3.06 × 10‐4 
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cellular_component  GO:0099061 

Integral component of 

postsynaptic density 

membrane 

2.248669305  3.79 × 10‐3 

cellular_component  GO:0005912  Adherents junction  2.123743233  2.53 × 10‐9 

biological_process  GO:0051056 

Regulation of small 

GTPase‐mediated sig‐

nal transduction 

1.994471906  1.25 × 10‐3 

biological_process  GO:0018108 
Peptidyl‐tyrosine phos‐

phorylation 
1.978565473  6.13 × 10‐4 

biological_process  GO:0007411  Axon guidance  1.894891591  2.12 × 10‐4 

cellular_component  GO:0030424  Axon  1.858275329  9.42 × 10‐11 

molecular_function  GO:0005201 
Extracellular matrix 

structural constituent 
1.848586719  9.09 × 10‐4 

molecular_function  GO:0008017  Microtubule binding  1.810574065  1.12 × 10‐6 

cellular_component  GO:0045211 
Postsynaptic mem‐

brane 
1.791908353  1.55 × 10‐3 

biological_process  GO:0007156 

Homophilic cell adhe‐

sion via plasma mem‐

brane adhesion mole‐

cules 

1.784711934  2.12 × 10‐3 

molecular_function  GO:0051015  Actin filament binding  1.73356715  1.40 × 10‐4 

molecular_function  GO:0005516  Calmodulin binding  1.720232019  3.71 × 10‐4 

molecular_function  GO:0003779  Actin binding  1.719508015  1.91 × 10‐5 

cellular_component  GO:0098978  Glutamatergic synapse  1.643533776  8.85 × 10‐6 

cellular_component  GO:0043235  Receptor complex  1.637052075  8.44 × 10‐4 

biological_process  GO:0007420  Brain development  1.61913482  4.92 × 10‐3 

molecular_function  GO:0005096 
GTPase activator activ‐

ity 
1.598663334  5.70 × 10‐4 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. Results with FE ≥ 1.5 and FDR < 0.005 are selected and ranked by 

FE. An additional table  in the Supplementary Materials shows a full  list of the 90 biological pro‐

cesses, molecular functions, and cellular components (Table S2). 

Table 8. Enrichment Analysis for Cluster 8. 

GO element type  GO code  GO name  FE  FDR 

molecular_function  GO:0004712 

Protein serine/threo‐

nine/tyrosine kinase ac‐

tivity 

2.162900762  1.88 × 10‐3 

molecular_function  GO:0005524  ATP binding  1.716714944  1.24 × 10‐5 

GO: Gene Ontology; FE: fold enrichment; FDR: false discovery rate p‐value.  Biological processes, 

molecular  functions,  and  cellular  components  are  identified  by  their  reference  numbers 

(GO:XXXXXX) in Gene Ontology. Two results with FE ≥ 1.5 and FDR < 0.005 are selected and ranked 

by FE. An additional table in the Supplementary Materials shows a full list of the 7 biological pro‐

cesses and molecular functions (Table S2). 

Finally, to evaluate the impact of each cluster on the HPO phenotypes related to ASD, 

we computed  the FE between  the set of genes belonging  to each cluster and  the genes 

related to the phenotype in HPO. The results are presented in Table 9, where we show all 

the phenotypes with FE > 1.0. Cluster 1 is not present since no FE was above 1.0. 
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Table 9. Phenotype Fold Enrichment by Cluster. 

Cluster / 

Phenotype 
0  2  3  4  5  6  7  8 

Restrictive 

behavior 
 

1.22 

 
 

2.33 

 
  1.23    1.93 

Impaired 

social 

interactions 

1.05 

 

1.16 

 

1.12 

 

3.81 

 

1.32 

 
2.01  1.18   

Poor eye 

contact 
   

1.55 

 
 

1.15 

 
1.40    2.56 

Lack of 

peer 

relationshi

ps 

1.20 

 

1.65 

 
 

4.16 

 
  2.22 

1.17 

 

1.74 

 

Restrictive 

behavior 
          1.23     

Impaired 

ability to 

form peer 

relationshi

ps 

1.20 

 

1.83 

 
 

13.95 

 
       

Abnormal 

non‐verbal 

communica

tive 

behavior 

 
1.10 

 
  8.37         

FE: fold enrichment. Genes belonging to each cluster and the genes related to the phenotype in HPO. 

Results are shown ranked by fold enrichment. An additional table in the Supplementary Materials 

shows the full list of phenotypes of interest (Table S3). 

4. Discussion 

Autism spectrum disorder (ASD) is a clinically heterogeneous neurodevelopmental 

disorder. The clinical heterogeneity of ASD appears to be closely mirrored by the large 

variety of ASD‐related genes. The genetic architecture of ASD is extremely complex, and 

it is still an active area of research. Important advancements in the discovery of various 

molecular mechanisms underlying the genetics of autism and  the  identification of new 

ASD risk genes have opened new ways to study the pathophysiology of this disorder [40].   

Numerous studies have already highlighted the role of different ASD risk genes con‐

verging in many biological processes related to various cellular functions, such as gene 

transcription and translation regulation processes, as well as neuronal activity modula‐

tion, synaptic plasticity, disrupted key biological signaling pathways, and ion channels 

[41,42].   

Recent advances in ASD understanding have pointed out the role of genotype–phe‐

notype approaches in disentangling the biological bases of the disorder [43]. Indeed, most 

of the ASD‐associated genes can be functionally classified into specific molecular path‐

ways, but it is still a matter of speculation how molecular pathway alterations could affect 

ASD phenotypes. For example, mouse models have shown how specific abnormal path‐

ways could impact behavioral phenotypes. In mouse models of ASD as well as in clinical 

neuroscience, behavioral phenotypes, such as impaired social interactions or stereotyped 
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behaviors have been associated with neural circuit dysfunctions and abnormal molecular 

pathways [44,45]. Similarly, to take another example, our study identified the presence of 

variants of the CAPRIN1 gene in several clusters, associating it with different biological 

pathways. CAPRIN 1 was previously related to carcinogenesis [46] and also―in mouse 

studies― to brain activity and reduced social interaction phenotypes [47]. More recently, 

loss‐of‐function variants  in  this gene have been associated with a neurodevelopmental 

phenotype presenting, among other characteristics, with language impairment, ADHD, 

and ASD [48]. It is, therefore, noteworthy to underline that understanding the linkage be‐

tween ASD genotypes and phenotypes may help  to achieve proper diagnosis, predict 

prognosis, and individualize precision therapy [49]. 

ASD  is  likely  the  result of a  complex  interaction of  factors  rather  than  the conse‐

quence of a single  factor driving the system. As such, traditional sequencing tools  that 

search for univariate drivers of ASD are unlikely to find consistent patterns. Otherwise, 

machine learning techniques that explore large search spaces for multivariate interactions 

are becoming popular in helping to elucidate the complex interactions in systems such as 

in ASD [13]. Therefore, machine learning approaches have been consistently used as tools 

for examination, stratification in disease severity, and differential diagnosis in ASD and 

other neurodevelopmental disorders [13–15], as well as for genotype–phenotype studies 

[3]. 

Building upon our previous study [17], in this research we used the VariCarta data‐

base to identify genetical subgroups of individuals with ASD, applying a novel machine 

learning approach based on a clustering analysis on a modified embedding space. We 

obtained different clusters of ASD‐related genes and extracted from each cluster the set of 

related genes. Then, we applied the enrichment analysis to the genes to emphasize crucial 

biological processes associated with ASD. Finally, we performed an additional analysis to 

evaluate the impact of these genes on a subset of phenotypes related to ASD. 

4.1. Cluster Comparisons 

Among the nine retrieved gene clusters, two appeared to be of higher clinical rele‐

vance (Cluster numbers 2 and 7). Here, biological processes and cellular components re‐

lated to synaptic communication, such as axon growth and guidance, pre‐ and post‐syn‐

aptic membrane components, modulation of chemical synaptic  transmission, and post‐

synaptic density play a fundamental role. These pathways have already been associated 

with ASD pathogenesis [10,50,51], including in our previous study [17]. Particularly inter‐

esting is the fact that some of the processes enriched in Cluster 2 also have a possible direct 

clinical relevance in terms of phenotypes, as the phenotype fold enrichment per cluster 

highlighted. This is the case of the CA1 and GABA synapses, which appear to be involved 

in  social  interaction  difficulties.  Indeed,  Schaffer  collateral‐CA1  synapses,  potentially 

linked to hippocampal abnormalities, are crucial for social development and implicated 

even in autism/epilepsy comorbidity [52]. Regarding GABAergic synapses, the disturb‐

ance of the delicate balance between excitation and inhibition in the developing brain pro‐

foundly  impacts neurobehavioral phenotypes. Analogously, GABA  receptor polymor‐

phisms are associated with deficits in social interaction and in sensorimotor and soma‐

tosensory coordination, visual response, imitation, and adaptability [53,54].   

Even the other clusters have shown some possible interesting genotype–phenotype 

associations. In Cluster 3, for example, the enrichment analysis has put the spotlight on 

photoreceptor connecting cilium: there is evidence of an altered retinal function in ASD 

mouse models [55], with consequent atypical visual processing [56]; thus, we can hypoth‐

esize a possible association with eye contact deficits due to an impairment of visual sen‐

sory processes in ASD, as our phenotype fold enrichment per cluster also suggested. 

In Cluster 6, as well as  in Cluster 8, ATP binding was pinpointed as a process of 

interest. According to the literature, mutations in the ATP‐binding cassette subfamily A 

member 13 (ABCA13) have been studied in monkey models for ASD, showing repetitive 

behaviors [57]. Drosophila models for ASD also showed deficits in social interactions [58]. 
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Both these ASD clinical features have been highlighted by larger fold enrichments in these 

clusters. 

We also compared the number of variants included in each cluster with the number 

of genes classified by the existing literature as ASD linked. It was not surprising to detect 

a difference in terms of numbers. In fact, genetic variants identified in an individual or in 

a group of individuals might be occasional and not necessarily a factor related to the dis‐

order. At the same time, such a difference might also call for the need of studying not only 

genes but also gene networks and gene  interactions as possible ASD causative  factors. 

This is why a key element of this research is the use of a novel machine learning method‐

ology to identify genetic subgroups of individuals with ASD, giving resonance to specific 

biological processes among different ASD phenotypes. It was used in this study particu‐

larly to search for possible links between genetic networks and endophenotypes.   

4.2. Translation into Clinical Research 

In this study, we implemented patient similarity analysis, which was built upon our 

earlier work [17] by using a new metric. We used patient similarity algorithms considering 

that these can play a crucial role in identifying subpopulations of individuals with ASD 

who could share the same etiopathology. Based on genetic traits or biological activities, 

molecular processes, and cellular components [59], the identification of subgroups of in‐

dividuals can be further enhanced. After completing the subgroup categorization process, 

it is possible to assess the membership of each individual in a particular group by analyz‐

ing their distance from the other subgroups. These methods might also help in determin‐

ing which of the many genetic variations that define ASD [60] play a leading role in con‐

tributing  to  its  etiopathology  and  clinical  implications.  Additionally,  improved  ap‐

proaches could make it possible to distinguish between variations influencing ASD and 

those influencing other neurodevelopmental disorders. 

In the current study, we did not consider targeted analysis sequencing because this 

technique focuses on the identification of specific genes highly related to a disease, assum‐

ing that these are known. However, this assumption can only be made in the case of well‐

documented “syndromic” ASD, such as, among many others, tuberous sclerosis, Fragile 

X syndrome, Rubinstein–Taybi syndrome, or Phelan–McDermid syndrome [61–63]. Yet, 

about 85% of all ASD diagnoses are represented by “idiopathic ASD” [64], which might 

be associated, e.g., with factors such as neuroinflammation, autoimmunity, or metabolic 

disorders [65–67]. Therefore, limiting the analysis to a few genes, while ignoring others 

could lead to reduced detection of relevant gene variants in a single individual. 

4.3. Limitations 

Several limitations should be kept in mind when interpreting our findings. First off, 

we did not conduct the same research on a sample of people without ASD, as VariCarta 

does not include data about these individuals. This restriction does not allow to distin‐

guish between de novo mutations and those found in the genomes of the biological par‐

ents [50]. Likewise, population stratification analysis was not feasible since VariCarta does 

not disclose any information about age, gender, ethnicity, family relationships, or other 

personal characteristics of the included individuals. Furthermore, VariCarta does not in‐

clude details on each person’s homozygous/heterozygous status. Hence, the variability of 

the impacts of the variations connected to this characteristic could not be evaluated in the 

current analysis, even though, given the design of this study, the absence of this  infor‐

mation would have probably had a negligible effect on the results. A further limitation, 

related to the characteristics of the used dataset, concerns the inability to remove common 

variants and evaluate variant deleteriousness in the cluster analysis. However, from anal‐

yses conducted in our previous work [17], this appears to be a minor limitation. It must 

be emphasized that we used a database that excluded environmental or epigenetic varia‐

bles, restricting the classification of the subgroups exclusively to genetic variant events. 

Additionally, all variations were included in the study; there was no selection based on 
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variation nature (base substitution, deletion, or insertion), category of nucleotide varia‐

tion, or category of sequence variation  (exonic or  intronic). Even though the variations 

included in VariCarta were obtained from published controlled studies where the variant 

was related with ASD, it is possible that not at all genetic variants were implicated in ASD. 

Finally, even though the proposed methodology allowed us to assess the impact of vari‐

ants on a subset of phenotypes related to ASD and epilepsy, and preliminary assessments 

conducted on the clusters were found in the literature for some possible genotype–phe‐

notype associations, the absence in the dataset of the description of each phenotype, in‐

cluding gender and IQ, did not allow us to confirm our clustering results. 

In conclusion, since ASD is a multigenic and highly heterogeneous condition, inno‐

vative methodologies, including machine learning and newly developed biomedical in‐

formatics, can improve our understanding of the underlying biological processes that un‐

dergo the etiology and the pathogenic mechanisms of ASD and may identify more homo‐

geneous subgroups of  individuals with ASD. Due  to  the complex architecture of ASD, 

similarity analysis and machine learning might be helpful in forecasting developmental 

trajectories [68], offering therapeutic decision assistance [69], and customizing individual 

therapies [70]. The methodology experimented here in the context of ASD could also be a 

promising tool for the study of other disorders. Nonetheless, further research comparing 

the identified biological processes, the shared genetic pathways, and the convergent en‐

dophenotypes with associated phenotypes will be necessary to confirm the clinical valid‐

ity and usefulness of our results.   
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