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ABSTRACT:

Landslides endanger settlements and infrastructure in mountain areas across the world. Monitoring of landslides is therefore essen-

tial in order to understand and possibly predict their behavior and potential danger. Terrestrial laser scanning has proven to be a

successful tool in the assessment of changes on landslide surfaces due to its high resolution and accuracy. However, it is necessary

to classify the 3D point clouds into vegetation and bare-earth points using filtering algorithms so that changes caused by landslide

activity can be quantified. For this study, three classification algorithms are compared on an exemplary landslide study site in the

Oetz valley in Tyrol, Austria. An optimal set of parameters is derived for each algorithm and their performances are evaluated

using different metrics. The volume changes on the study site between the years 2017 and 2019 are compared after the applica-

tion of each algorithm. The results show that (i) the tested filter techniques perform differently, (ii) their performance depends on

their parameterization and (iii) the best-performing parameterization found over the vegetated test area will yield misclassifications

on non-vegetated rough terrain. In particular, if only small changes have occurred the choice of the filtering technique and its

parameterization play an important role in estimating volume changes.

1. INTRODUCTION

The monitoring of landslides is an important tool for assess-

ing their activity in time and space. Only remote sensing tech-

niques are suitable for an area-wide quantification of landslide-

induced changes in topography. Current techniques used in-

clude (Scaioni et al., 2014): (i) Light Detection and Ran-

ging (LiDAR), (ii) optical cameras and photogrammetry, (iii)

passive thermal infrared sensing and (iv) Interferometric Syn-

thetic Aperture Radar (InSAR) from ground and satellite-based

sensors. LiDAR sensors have been most widely used for land-

slide investigations due to their high spatial resolution and ac-

curacy (Glenn et al., 2006; Jaboyedoff et al., 2012). In partic-

ular, Terrestrial Laser Scanning (TLS; Pfeiffer et al., 2018) and

Unmanned aerial vehicle-based Laser Scanning (ULS; Zieher

et al., 2019) are flexible and cost-efficient platforms for monit-

oring landslides.

A striking advantage of LiDAR sensors is that they can pen-

etrate vegetation, which enables topographic changes in veget-

ated areas to be detected (e.g. Eeckhaut et al., 2007). Ground-

based InSAR sensors tend to operate at high radar frequencies

(12-30 GHz) where vegetation penetration is minimal (Mon-

serrat et al., 2014). So while InSAR techniques can penetrate

∗Corresponding author: ivan.gutierrez@uis.no

vegetation, the backscatter received from vegetation tends to

be in the form of volume reflection. Extracting the points that

represent the terrain in a 3D point cloud has a long tradition

(e.g. Kraus and Pfeifer, 1998) and a variety of techniques and

tools have been proposed and evaluated to achieve this (Sithole

and Vosselman, 2004; Chen et al., 2017; Roberts et al., 2019).

The general principle of terrain filtering is to select those points

which represent the bare earth and remove objects in the in-

tervening space. Following Briese et al. (2010) and Pfeifer et

al. (2018), the techniques can be classified into: (i) morpholo-

gical, (ii) progressive densification, (iii) surface-based, and (iv)

segment-based filters.

In general, surface-based filters tend to out-perform other tech-

niques but the complexity of the landscape ultimately determ-

ines the accuracy of the bare-earth extraction (Sithole and Vos-

selman, 2004). However, recent reviews on the subject have

challenged this view (Chen et al., 2017; Roberts et al., 2019),

calling instead for a multi-method approach to filtering. For ex-

ample, the popular Triangular Irregular Network (TIN)-based

densification method (Axelsson, 2000) performs well in steep

terrain but is less accurate when the surface has many sud-

den discontinuities (Chen et al., 2017). In comparison, meth-

ods that filter at multiple scales (Evans and Hudak, 2007) are

able to classify these discontinuities more readily. The simplest
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Figure 1. Overview map highlighting the Oetz valley (a); a zoomed in view of the landslide area showing the measurement setup at the

landslide site including the scanning positions (red dots), the area covered by the acquired 3D point clouds (shaded relief), the selected

35x35 m test area for calibrating and comparing the filtering techniques, and the debris cone (hatched area) (b); photo of the landslide

slope taken on 17/07/2017 (c); and photo of the landslide slope taken on 19/06/2019 (d). Orthophoto (2015) and contour lines (2010):

Federal state of Tyrol, division of geoinformation. Photos: T. Zieher (c), M. Kuschnerus (d)

morphological techniques characterise ground and non-ground

points using slope thresholds but struggle to classify terrain that

contains multiple different objects. However, our understand-

ing of the performance of each technique in different environ-

mental settings remains limited. A common theme amongst

all filters is that they become less accurate where the terrain is

steep (Kraus and Pfeifer, 1998; Chen et al., 2017; Zhao et al.,

2018; Pfeifer et al., 2018), making the discrimination between

vegetation and bare-earth on landslides particularly difficult.

The aim of this study is to better understand the effects of differ-

ent ground filtering techniques in quantifying volume changes

caused by landslides. Here, ground points are defined as the

lowest points acquired by TLS which likely represent the ter-

rain surface below vegetation. The study was carried out on a

partly vegetated slope prone to landslide processes in the inner

Oetz valley (Tyrol, Austria) with TLS campaigns in July 2017

and June 2019. The parameterizations of three surface-based

ground filtering techniques were systematically tested within

a selected, vegetated test area and compared against a manual

classification. Based on these tests, the sets of parameters which

most closely matched the manual classification were identified

for each technique and campaign. Subsequently, the perform-

ance of the filtering techniques was evaluated over rough terrain

where no vegetation is present. Conclusions are then drawn on

the effects of ground filtering for quantifying landslide-induced

volume change. The objectives of the study are to:

1. Investigate the performance of different filtering tech-

niques in determining ground and non-ground points in

TLS 3D point clouds.

2. Identify optimum parameter values for each filtering tech-

nique by comparing the classification result to a manually

classified test area.

3. Assess the effects of ground filtering on quantifying

volume change in a debris cone between July 2017 and

June 2019.

2. MATERIALS AND METHODS

2.1 Study area

The study area is located in the Oetz valley (Tyrol, Austria)

between the villages of Zwieselstein and Obergurgl (Fig. 1).

The valley bottom in this area is v-shaped and deeply incised

into the Quaternary sediments and the underlying rocks of the

Oetztal-Stubai-Basement complex. The west-facing slope of

the study area is characterized by active landslide processes, in-

cluding repeated rockfalls and debris slides and flows. On the

valley bottom the slope is bound by the river Gurgler Ache at

ca. 1700 m and the crest elevation of the landslide slope is ca.

2000 m. The foot slope forms part of the river embankment,

which is subject to permanent fluvial erosion, further destabil-

izing the slope. The whole landslide can be viewed from sev-

eral locations on the east-facing slope along a trail parallel to

the road.

2.2 Data acquisition, pre-processing and registration

Figure 2 shows the main processing steps used in this study.

The 3D point clouds were acquired with a Riegl VZ-6000

long-range TLS in July 2017 and June 2019. The scanner’s

wavelength of 1064 nm has the potential to cause eye damage

and so safety precautions had to be taken to ensure no-one had

a direct line of sight to the scanner. Scanning repetition rates

were set to 150 kHz in July 2017 and 300 kHz in June 2019.

Both, frame and line resolutions were set between 0.005◦ and

0.014◦. The specified beam divergence of the Riegl VZ-6000

is 0.12 mrad resulting in a nominal footprint diameter of 1.2 cm

at a distance of 100 m, considering a Gaussian beam with its

diameter defined at 1/e2 irradiance (Riegl LMS GmbH, 2020).

Firstly, outliers were identified and removed as those points

with less than five neighbours within a radius of 0.5 m. The

number of points in the data set was then thinned using a 3D

block thinning approach where only those points closest to
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DATA ACQUISITION TLS 19/07/2017 TLS 19/06/2019

Outlier filtering,

3D block thinningPRE-PROCESSING

Coarse and fine registration,

multi-temporal registration,

georeferencing
REGISTRATION

GROUND FILTERING

Progressive TIN-densification,

Cloth simulation filter,

Multiscale curvature classification

Comparison with manual classifi-

cation using performance metricsVALIDATION

Volume estimationPOST-PROCESSING

Figure 2. Conceptual workflow of the main processing steps.

the centre of a voxel with edge length 0.1 m were kept. Sub-

sequently, the acquired 3D point clouds of the two epochs

were registered respectively using the Iterative Closest Point al-

gorithm (ICP; Besl and McKay, 1992) using flat areas extracted

based on the locally computed planarity feature (1 m neighbour-

hood; planarity threshold 0.90). Then, the multi-temporal 3D

point clouds were registered based on identified bedrock out-

crops which are considered stable over time.

For comparing the performance of the considered ground fil-

tering techniques, a test area with high vegetation density and

sufficient coverage in the 3D point clouds acquired in 2017 and

2019 was selected (Fig. 1b,c,d). The test area has an edge length

of 35 m (green square in Fig. 1b) and an additional buffer of

5 m (red polygon in Fig. 1b) around it to exclude edge effects

in the filtering results. The 3D point clouds within the test

area acquired in 2017 and 2019 were manually classified into

ground and non-ground points on a point-by-point basis using

the CloudCompare software (version 2.9.1). Subsequently, sys-

tematic tests of the filtering parameters were conducted using

the 3D point clouds within the test area.

2.3 Applied terrain filtering algorithms

2.3.1 Progressive TIN Densification

The Progressive TIN Densification (PTD) algorithm starts from

an initially coarse TIN of local minima and iteratively refines

the classification by adding points which meet defined criteria

(Fig. 3). The edge length of the triangulated network is iterat-

ively reduced until reaching a defined Minimum Edge length

(ME). Points within each triangle are considered if they are

within a defined maximum distance constrained by the Max-

imum vertical Angle (MA) spanned by the network. The res-

ulting classification is thus mainly controlled by the parameters

ME and MA. A range of values were tested for each. For ME,

values between 0.1 and 1.0 m were tested, and for MA, values

between 5◦ and 80◦ were tested. The PTD algorithm was pro-

posed by Axelsson (2000) and has been revised several times

since then (e.g. Zhao et al., 2016; Nie et al., 2017). In this

study the original version of the PTD implemented in SAGA

LIS following Axelsson (2000) was used.

α
β

γ

A

B

C

D

Figure 3. Sketch of the applied progressive TIN densification

filter, modified after Axelsson (2000).

2.3.2 Cloth Simulation Filtering

The Cloth Simulation Filter (CSF) is a surface-based classi-

fier which iteratively adjusts a flexible cloth to an inverted 3D

point cloud by mimicking the laws of gravity. The simulated

cloth is supported by cloth particles with a defined spacing, the

Cloth Resolution (CR), and begins as a plane surface (Fig. 4).

Its shape is then iteratively refined considering gravity and in-

ner forces of the cloth until it is sufficiently supported by the

3D point cloud. Points located within a specified distance, the

Classification Threshold (CT), to the simulated cloth are classi-

fied as ground points. The CSF was introduced by Zhang et al.

(2016) and is available as a plugin in the CloudCompare Soft-

ware (version 2.9.1). The test area was used to refine values

for CR and CT. In this study, values between 0.1 and 0.5 were

tested for CR, while values between 0.1 and 1.0 were tested for

CT.

Cloth

Non-ground

Ground

Figure 4. Sketch of the cloth simulation filter, modified after

Zhang et al. (2016).

2.3.3 Multiscale Curvature Classification

The Multiscale Curvature Classification (MCC) algorithm is

a surface-based classifier that determines ground and non-

ground points in a 3D point cloud based on a user-defined

curvature threshold (CUT). The surface curvature is calculated

across multiple scales, defined by the Scale Parameter (SP),

using an interpolated thin-plate spline surface. Ground and

non-ground points are classified at three scale domains un-

til the number of non-ground points being classified reaches

<1%, when the iteration stops and the classification is com-

plete (Fig. 5). The MCC algorithm was proposed by Evans and

Hudak (2007) and is available as a command line tool (MCC-

LiDAR v.2.1, https://sourceforge.net/projects/mcclidar). In this

study both parameters have been systematically tested across

ranges between 0.1 and 1.0 for both CUT and SP.

Actual non-ground points

Actual ground points

Curvature threshold

Classified as non-ground points

Interpolated surface after 3X3 mean kernel

Scale Domain 1 Scale Domain 2

Figure 5. Sketch of multiscale curvature classification principle.
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Table 1. Confusion matrix used to compare the manual

classification and the classification from the filtering technique.
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2.4 Validation procedure

Before analysing the results, the filtered points within the buffer

area were removed. The remaining classified points were valid-

ated against manually classified 3D point clouds from 2017 and

2019. The following formulas correspond to the performance

metrics (e.g. Xia and Wang, 2017; Roberts et al., 2019) that

were calculated from a confusion matrix of classified ground

and non-ground points (abbreviations refer to Table 1):

ACC =
TP + TN

TP + TN + FP + FN
(1)

The overall accuracy (ACC) relates the number of correctly

classified ground (TP) and non-ground points (TN) to the total

number of points.

PRE =
TP

TP + FP
(2)

The precision metric (PRE) is the ratio between the correctly

predicted ground points (TP) and all points which were pre-

dicted as ground points by the filter (TP and FP). It reflects the

ability of the filter technique to avoid commission errors i.e. by

identifying ground points and differentiating them from non-

ground points (Evans and Hudak, 2007).

REC =
TP

TP + FN
(3)

The recall metric (REC) is the ratio between correctly classified

ground points (TP) and the total number of manually classified

ground points (TP and FN). High values of the recall metric

suggest that the filter minimizes omission errors by preserving

valid ground points (Evans and Hudak, 2007).

F1 = 2 ∗
PRE ∗REC

PRE +REC
(4)

The F1 score is the harmonic mean of the precision and re-

call metrics. It ranges from 0 to 1 (1 = perfect precision and

recall) indicating the efficiency of the filter to classify ground

and non-ground points. The F1 score can be used to find the

optimal trade-off between precision and recall and hence the

best-performing parameter set for each filtering technique.

Table 2. Number of manually classified ground and non-ground

points in the vegetated test area without the buffer.

Manual Classification 2017 2019
Ground Points 146785 203135
Non-ground Points 1330537 1076819
Total 1477322 1279954

2.5 Data post-processing

After identifying the best-performing parameter value sets for

each technique, the values were then applied to the whole 3D

point clouds. The filtering results were then evaluated on the

debris cone (Fig. 1b), where large volumes of sediment of vary-

ing size have accumulated in the 2 years between measure-

ments. The 2.5D volume change on the debris cone between

2017 and 2019 was assessed (i) based on the unfiltered 3D

point cloud, assuming all translocated objects such as boulders

should be considered, and (ii) based on the filtered 3D point

clouds with the optimal parameter sets. By comparing (i) and

(ii) the volume bias introduced by the filtering techniques can

be quantified. For computing the volume change, the 3D point

clouds were gridded at a spatial resolution of 0.25 m and taking

the mean elevation in each raster cell.

For data processing, the following software packages were

used: RiScan Pro (v.2.8), CloudCompare (v.2.9.1), SAGA

LIS, MCC-LiDAR (v.2.1). The processing workflows have

been automated using Python 2.7 (Python Software Foundation,

2019) and the R open source statistical software (R Core Team,

2019).

3. RESULTS

3.1 TLS accuracy assessment

The accuracy of the multi-temporal ICP registration between

the 2017 and 2019 3D point clouds was assessed at different dis-

tances to the scanner by extracting bedrock outcrops assumed

to remain stable. Point-to-plane distances were computed along

locally fitted normal vectors resulting in an accuracy (2-fold

standard deviation) of ±2.5 cm at 200 m, ±2.7 cm at 300 m and

±5.2 cm at 550 m. Topographic changes of at least 10 cm could

therefore be quantified. This value is above the diameter of the

LiDAR footprint which is approximately 6.0 cm at 500 m (as-

suming a 90◦ incidence angle on a plane).

3.2 Filtering results for the vegetated test area

Performance curves in Fig. 6 show the derived F1 score metrics

of the three filters applied to both 3D point clouds acquired in

2017 and 2019. The performance of each filter varies markedly

over the ranges of values considered for each parameter. In gen-

eral, the filters perform better in 2019 compared to 2017. This

could be explained by differences in the ratio of points classified

as ground or non-ground between the two measurement epochs.

Although the total number of points is higher in the 2017 data

set, its total number of ground points is lower compared to the

2019 data set (Table 2).

Generally, the three techniques depict a similar trend. Initially,

there is an upward trend in the curves. Then, they level off

and tend to stay constant, except for the steady downward trend

observed for the MCC results (Fig. 6c,f). However, the filters
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Figure 6. F1 scores for classifying ground points with the PTD filter (a,d), the CSF (b,e) and the MCC filter (c,f) for the selected

vegetated test area. Results are shown for the 3D point clouds acquired in 2017 (a,b,c) and 2019 (d,e,f).

Table 3. Performance metrics for the identified best parameter

set for each technique applied to the 3D point clouds acquired in

2017 and 2019. Acronyms are defined in the text.

Filter Year Parameter A Parameter B ACC PRE REC F1

PTD
2017 MA 50◦ ME 0.10 m 0.96 0.83 0.75 0.79
2019 MA 80◦ ME 0.10 m 0.95 0.91 0.73 0.81

CSF
2017 CT 0.40 CR 0.20 m 0.91 0.51 0.86 0.64
2019 CT 0.40 CR 0.20 m 0.92 0.71 0.89 0.79

MCC
2017 CUT 0.20 SP 0.30 m 0.95 0.69 0.85 0.76
2019 CUT 0.20 SP 0.20 m 0.95 0.84 0.86 0.85

perform differently when considering the parameter represent-

ing the neighbourhood sizes (depicted by the colour scale in

Fig. 6). The F1 score of the PTD filter increases when ME is re-

duced. In contrast, applying the smallest chosen value of 0.1 m

to CR in the CSF and SP in the MCC does not yield the max-

imum F1 score. For the MCC, using a small value for SP yields

a high F1 score if combined with a small value for CUT.

The parameter sets providing the best classification, defined

here as the optimal trade-off between precision and recall, can

be derived from the highest F1 scores for each technique (Fig. 6,

see Table 3). In case of the PDT filter the smallest tested ME

of 0.10 m combined with an MA of 50◦ (2017) and 80◦ (2019)

produce the highest F1 score. For the CSF, the combination of

0.20 m for CR and 0.40 for CT yields the highest F1 score for

both data sets. The MCC performs best when using SP values

of 0.30 m (2017) and 0.20 m (2019) combined with a value of

0.20 for CUT.

Table 3 shows the performance of each filter when applied to

the 2017 and 2019 data sets, using the optimized parameter sets

identified previously. The achieved ACC of each filter is com-

parable for each data set. However, comparing PRE, REC, and

the F1 score, differences in the classification performance be-

come clear.

The differences regarding PRE and REC are shown as maps

in Fig. 7. The points are colour-coded following the confusion

matrix. Maps displaying green coloured points (True Positive)

along with magenta coloured points (False Positive) represent

the PRE metric (Fig. 7a-f). The maps with a concentration of

magenta points suggest low PRE (e.g. in the north-northwestern

part of Fig. 7b, Fig. 7c, and Fig. 7e), particularly for the CSF

and MCC classifications (both 2017 and 2019). Conversely,

maps with fewer magenta points suggest a high PRE, which

is particularly true for the PTD filter (Fig. 7a,d). Likewise,

maps displaying green coloured points (True Positive) along

with blue coloured points (False Negative) represent the REC

metric (Fig. 7g-l). The generally less False Negatives resulting

from the CSF and the MCC are mainly located in the south-

western part of the test area in both data sets. For the PTD filter

results, the larger number of False Negatives are well distrib-

uted over the test area (Fig. 7g,j).

The PTD filter yields the lowest number of False Positive

points, thus avoiding commission errors. Therefore, it is the

technique that achieves the best performance in terms of PRE.

However, the PTD filter underestimates the number of manu-

ally classified ground points. Hence, it does not avoid omission

errors efficiently and it yields the highest number of False Neg-

ative points as consequence. The PTD filter shows the poorest

performance in terms of REC. In contrast, the CSF results

show the lowest PRE because the number of manually classified

ground points is systematically overestimated (Fig. 7b,e). Non-

etheless, it is the technique with the best REC (Fig. 7h,k). The

values for PRE and REC for the MCC filter are more balanced

compared to those resulting from the CSF and PTD filter. The

F1 score indicates that the MCC is the technique that achieves

the most optimal trade-off between PRE and REC, particularly

in 2019 (Fig. 6f, Table 3).

3.3 Effects of filters in quantifying volume change over a

debris cone

Figure 8 highlights the points classified as non-ground on the

debris cone using each technique, applying the best parameter

sets identified in the vegetated test area. Despite the absence
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Figure 7. Point cloud maps of the vegetated test area derived from the classified data sets acquired in 2017 (a,b,c,g,h,i) and 2019

(d,e,f,j,k,l). The test area was scanned from the west and north-west direction. The points are coloured following the confusion matrix

classification code for each ground filtering technique. The results are shown for the following filtering techniques: PTD (a,g,d,j), CSF

(b,h,e,k) and MCC (c,i,f,l). PRE metric (a-f) and REC metric (g-l). See text for full discussion.

Table 4. Number of classified Ground Points (GP) and

Non-Ground Points (NGP) on the debris cone. The filter

acronyms are defined in the text.

Filter
Number of GP Number of NGP Percentage NGP

2017/07 2019/06 2017/07 2019/06 2017/07 2019/06
PTD 296149 357373 59743 127199 16.8% 26.2%
CSF 351402 475875 4490 8697 1.3% 1.8%
MCC 343359 454330 12533 30242 3.5% 6.2%

of vegetation, the filtering techniques yield non-ground points

over the debris cone, although their number and location varies

between techniques. This can be attributed to the rough terrain

across the debris cone which introduces discontinuities inter-

preted as vegetation by the filtering techniques. The respective

number of classified ground and non-ground points are shown

in Table 4. Generally, more non-ground points are classified

in the 3D point cloud acquired in 2019. Comparing the three

filtering techniques, the PTD filter classified the most points

as non-ground, and these were distributed all over the debris

cone including the top surface of boulders but also small blocks

(Fig. 8a,d). The MCC yields less non-ground points than the

PTD filter. The points mainly cover the tops of large boulders

(Fig. 8c,f). The smallest number of non-ground points resulted

from the CSF (Fig. 8b,e), and these were mainly located on top

of large boulders.

To quantify the volume change between the two epochs, the

2017 and 2019 unfiltered 3D point clouds were differenced

from each other. Based on this calculation, more than 3000 m3

of loose material accumulated across the landslide over the 2

year study period. This included the numerous large boulders

that were present on the surface of the debris cone. Only se-

lected areas show a negative elevation change, which together

equate to -25.5 m3 (Table 5). Assuming the 3D point cloud co-

ordinates have a vertical uncertainty of ±2.5 cm at the range

of the debris cone, the uncertainty of the derived total volume

change is ±60 m3 within the covered area of 2400 m2.

Using different filtering techniques alters the volume change es-

timate (Table 5). Because of the larger number of non-ground

points classified by the PTD filter, which are omitted when

computing the respective DTMs, this technique also yields the

Table 5. Volume change and derived volume bias on the debris

cone for the different filtering techniques. The filter acronyms

are defined in the text.

Filter
Volume change [m3] Volume bias [m3]

positive negative total positive negative total
NONE 3373.6 -25.5 3348.1
PTD 3348.6 -26.6 3322.0 -25.0 -1.1 -26.1
CSF 3371.4 -25.4 3346.0 -2.2 0.1 -2.1
MCC 3363.0 -25.9 3337.1 -10.6 -0.4 -11.0

highest volume bias of -26.1 m3. On the contrary, the bias intro-

duced by the CSF of -2.1 m3 is considerably lower. However,

the derived volume bias is within the accuracy of the acquired

data.

4. DISCUSSION

This study has illustrated the effects of applying different

ground filtering techniques when quantifying volume change

on a landslide slope in the Oetz Valley, Austria. A subset of

the data, the test area, was manually classified and compared to

the classified 3D point cloud produced by each filtering tech-

nique. This analysis identified the optimum parameter sets for

each filtering technique. When considering the F1 score which

was used as a global performance metric, both the PTD and the

MCC filtering techniques perform better than the CSF (PTD

performs better for the 2017 data set and MCC better for the

2019 data set, see Table 3), which makes them comparable in

terms of performance.

It should be noted here that since the number of non-ground

points in the test area is higher than the number of ground

points, the accuracy does not necessarily reflect the effective-

ness of the filtering techniques. However, these results show

that even on a small, well known test area, choosing the best

performing algorithm with the best set of parameter values is

not trivial. The choice of algorithm may ultimately depend on

whether False Positives or False Negatives are acceptable or the

chosen metric (ACC, PRE, REC or F1 score), and both can be

subject to ‘over-fitting’. Whilst it may be possible to classify

vegetation as non-ground points over this test area, it does not

necessarily hold for other regions of the data set.
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Figure 8. Comparison of the classified non-ground points (red) on the debris cone. Results are shown for the points clouds acquired in

2017 (a,b,c) and 2019 (d,e,f) filtered with the best parameter set using the PTD filter (a,d), the CSF (b,e) and the MCC (c,f).

When applying each optimized filtering technique, there are ex-

amples of False Negative results (i.e. valid ground points classi-

fied as non-ground) across the study area, particularly over the

debris cone. Here, no vegetation is present but selected areas

of loose debris, the tops of boulders and other loose material

are repeatedly classified as non-ground. This is because these

areas act as discontinuities which the filtering techniques de-

termine to be related to objects above the ground, thus demon-

strating a clear weakness in the tested classifiers. Further, the

results in Table 4 suggest that the CSF performed best over

the debris cone, assuming only ground points are present here,

even though it performed the weakest over the test area. This

suggests that the CSF performs better when less vegetation is

present, while the PTD and MCC are preferable when the ve-

getation is more dense.

The results indicate that the choice of ground filtering technique

impacts the estimation of volume change on a landslide, partic-

ularly when aiming at quantifying minor volume changes (e.g.

occurring during a shorter period of time). Therefore, choosing

the optimal parameter values is not a simple task. This study

demonstrates a data driven approach to choosing the optimum

parameter sets for a landslide. However, optimizing these para-

meter values over vegetation leads to false classification of non-

ground points over the debris cone. Whilst this impacts the

volume change estimate, the difference between filtering tech-

niques is small (Table 5) i.e. they are all within the uncertainty

bounds of the total volume estimation. Thus, all three filtering

techniques provide a reasonable solution to the classification of

bare-earth where manual classification is not an option.

In the vegetated test area, removing valid ground points may be

preferred over introducing valid non-ground points to the clas-

sified ground points. As demonstrated in section 3, this can be

best achieved using the PTD filtering technique. In comparison,

if the study area contains almost no vegetation, as was the case

for the debris cone in this study, the CSF is the best alternat-

ive. The MCC appears to perform better when the vegetation is

more sparse since it delivers a good balance between REC and

PRE (high F1 score). Given that the performance of these tech-

niques changes based on the surface conditions, a multi-method

approach may be more suitable.

The implementation of the optimized parameter sets derived in

this study might not readily apply to other studies where the

landslide has comparable surface conditions. Acquisition as-

pects such as the TLS acquisition settings and the location and

number of scan positions may influence the performance of the

filtering techniques.

5. CONCLUSIONS

This study has compared the performance of three widely

used filtering techniques for classifying ground and non-ground

LiDAR point clouds. The key results are as follows:

1. Each technique performs differently depending on the

density of vegetation present on the surface.

2. The performance of each technique depends on the choice

of paramaterization used.

3. Despite optimizing the parameters for each filtering tech-

nique, boulders and loose debris on the debris cone were

often misclassified as non-ground owing to the use of

surface-based classifiers.

When the filter overestimates the number of ground points the

precision (PRE) performance reduces as the number of False

Positive classification points increase. This means that the fil-

tering technique cannot efficiently avoid commission errors.

Conversely, the filtering technique achieves a high recall (REC)

performance by avoiding omission errors. In this situation, the

filtering technique has a high probability of detection of ground

points and delivers fewer False Negative points as consequence.

For quantifying topographic change, the parameterization of the

filtering technique must be adapted to the terrain conditions. In
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particular, areas partly covered by vegetation requires a trade-

off between filter performance and the correct classification of

non-ground points (True Negatives). Alternatively, areas where

non-ground points are not expected to be present (e.g. on the

debris cone) could be identified a priori and omitted from the

filtering.

The workflow and performance metrics employed in this study

to obtain the optimized parameter sets, could be easily adapted

to similar studies dealing with terrains partially covered by ve-

getation. Utilising the optimized parameter sets and the know-

ledge of how each filtering technique performs, a multi-method

approach to ground filtering could be achieved.
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