

CUTANEOUS MELANOMA

A POCKET GUIDE FOR
DIAGNOSIS AND MANAGEMENT

EDITED BY

GIUSEPPE ARGENZIANO, AIMILIOS LALLAS,
CATERINA LONGO, ELVIRA MOSCARELLA,
ATHANASSIOS KYRGIDIS, GERARDO FERRARA

Further Reading

Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Elashoff R, Essner R, et al. Sentinel-node biopsy or nodal observation in melanoma. *N Engl J Med* 2006;355(13):1307-17.

Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Nieweg OE, Roses DF, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. *N Engl J Med* 2014;370(7):599-609.

Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. *J Clin Oncol* 2009;27(36):6199-206.

Mocellin S, Lens MB, Pasquali S, Pilati P, Chiarion Sileni V. Interferon alpha for the adjuvant treatment of cutaneous melanoma. *Cochrane Database Syst Rev* 2013;(6). CD008955.

Malczewski A, Marshall A, Payne MJ, Mao L, Bafaloukos D, Si L, et al. Intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence: meta-analysis of three trials. *Cancer Med* 2016;5(1):17-23.

Guitera P, Haydu LE, Menzies SW, Scolyer RA, Hong A, Fogarty GB, et al. Surveillance for treatment failure of lentigo maligna with dermoscopy and *in vivo* confocal microscopy: new descriptors. *Br J Dermatol* 2014;170(6):1305-12.

S U B C H A P T E R

5.2

Treatment of Stage III Melanoma

Mario Santinami, Gianfrancesco Gallino, Ilaria Mattavelli,
Roberto Patuzzo, Andrea Maurichi

IRCCS Foundation of the National Cancer Institute, Milan, Italy

Cutaneous melanoma at stage III expresses a locoregional spread of disease that may be characterized by lymph node metastases and/or in-transit metastases (IT-mets).

1 TREATMENT OF LYMPH NODE METASTASES

1.1 Lymph Node Metastases

- Metastases to regional lymph nodes represent the most important prognostic factor in melanoma patients and generally occur in 20% of cases [1, 2].

- Sentinel node biopsy (SNB) allows to early identify patients with occult disease who may benefit from an immediate lymph node dissection, in order to improve disease-free survival (DFS) and melanoma-specific survival (MSS) [3-11].

The gold standard of treatment for a node-positive disease is the complete dissection of the lymph node basin involved. It is defined as follows:

- Completion lymph node dissection (CLND): When it is performed after a positive SNB, in order to complete the removal of the remaining non-sentinel nodes (SNs)
- Therapeutic lymph node dissection (TLND): When it is performed after a clinical or radiological detection of metastatic nodes, confirmed after a histological examination

- However, numerous controversial issues on this topic do exist:

The management of melanoma nodal metastases, detected after a positive SNB, with a CLND is still debated (benefits vs. the side effects).

Findings supporting a routine CLND are as follows:

Some investigations did not identify relevant subpopulations of patients having a low risk of further metastatic non-SNs [12,13].

Histological analysis of non-SNs is typically less accurate as compared to that of SNs, so that the detection of metastatic cells in non-SNs could be underestimated; this may impact on patient outcome, since the detection of metastatic non-SNs is associated with an unfavorable prognosis [14].

The Multicenter Selective Lymphadenectomy Trial (MSLT-I) indicated that SN-positive patients in the SNB arm who underwent early CLND had less morbidity than patients in the observation arm who underwent delayed TLND at the time of nodal recurrence [15]. Moreover, SN-positive patients who underwent early CLND had higher survival rates than those with delayed TLND at the time of metastatic nodal recurrence, particularly for primary melanoma of intermediate thickness [11,16].

The most important side effects deriving from a CLND (including edema, lymphorrhea, etc.) are associated with the superficial inguinal-crural dissection rather than the deep iliac-obturator dissection. In addition, this procedure shows a higher morbidity when delayed until a clinical or radiological evidence of disease nodal relapse occurs. The increased morbidity recorded for a delayed CLND suggests to adopt this procedure in cases of positive SNB rather than in those of macroscopic nodal disease.

Findings not supporting a routine CLND are as follows:

Not all patients with positive SNs develop clinical regional recurrence; in some cases the metastatic deposit in the SN represents the initial expression of the spread of disease, while in others the SNB may have removed the only metastatic focus. Thus, routine CLND in all SN-positive cases could lead to overtreatment for a subgroup of patients, while another subset will achieve a real benefit.

Results showing that CLND could improve survival as compared to a clinic and radiological observation after the detection of positive SNs are lacking; the hypothesis that the clinical nodal observation associated with a regular ultrasonography could be an acceptable procedure for patients with positive SNs is currently under prospective investigation in the randomized MSLT-II [17], but answering this question will require many years of follow-up.

A recent study found no benefit of complete lymph node dissection compared with that of observation in patients with melanoma and micrometastases in the sentinel lymph node. Therefore, complete lymphadenectomy should not be recommended in patients with melanoma with micrometastasis, at least in those with single cells or micrometastases of 1 mm diameter or less.

The optimal extent of the groin lymph node dissection for melanoma patients with positive SNB is another debated issue.

No agreement exists with regard to the surgical removal of pelvic (iliac-obturator) lymph nodes.

Given the reported morbidity, including wound infection, seroma, flap necrosis, and lymph edema up to 80%, some surgeons consider the benefit-risk ratio unfavorable for patients, and thus limit the completion lymphadenectomy to the inguinal-crural nodal basin.

Conversely, other surgeons consider the incidence of pelvic lymph node metastases a relevant risk, sufficient to perform the pelvic completion lymphadenectomy, too. Such an aggressive approach may also be driven by the low benefits deriving from the approved codified adjuvant treatments, particularly from the use of interferon (IFN)-alpha [18]. In addition, a multicentric study showed that pelvic lymph nodes are frequently positive after an iliac-obturator dissection.

Since the pelvic lymph node metastases were associated with a worse prognosis, pelvic lymph nodes should always be considered [19].

Another key question open to discussion concerns the prognostic value of metastatic deposit in SN.

- The SN tumor burden is considered a significant prognostic factor for patient survival [20] [5-year overall survival (OS) rate of 100% in patients with single cell metastatic involvement of the SN, and 5-year distant metastasis-free survival of 91%, in line with the rates found in the SN-negative patient group].

Submicrometastasis (<0.1 mm) involvement of SN or isolated cluster of melanoma cells (>10) could biologically be considered differently from larger micrometastatic disease, and patients who showed this micrometastatic involvement in their regional nodes could be spared the morbidity of a CLND without compromising their survival chances.

Subsequent analyses [21–23] investigated different prognostic factors, particularly among cases with nodal metastatic deposit <0.1 mm, and showed that, when it was located in the subcapsular area, patients may be overtreated by a CLND, since their survival rates were similar to those of SN-negative patients.

- Up to date, the joint ASCO–SSO guidelines recommend as standard of care a CLND for all patients with positive SN [24,25].

1.2 Surgical Approach to Regional Lymph Node Basins

The cervical, axillary, and inguinal–iliac regional nodal basins are those generally involved by metastatic disease and candidate to surgery. Less frequently, the epitrochlear and popliteal basins are interested by metastatic spread.

1.2.1 Cervical Lymph Node Dissection (Fig. 5.2.1)

- The cervical node basin receives metastatic cells from primary head, neck, and upper trunk cancers.
- The surgical approach to patients with positive lymph nodes in this region is generally a modified neck dissection that includes the II, III, IV, and V levels, preserving the spinal accessory nerve, the internal jugular vein, and the sternocleidomastoid muscle.
- A concomitant superficial parotidectomy is usually performed in case of primary melanomas on the frontal scalp or temporal regions with a lymphatic spread to the parotid.
- The importance of the number of removed nodes in this kind of dissection has to be underlined; a cervical lymph node dissection including 4 or more levels should remove at least 20 lymph nodes [19].
- A radical neck dissection must be performed in case of evidence of

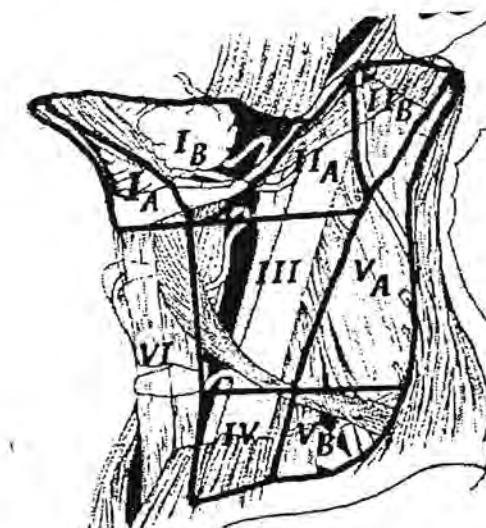
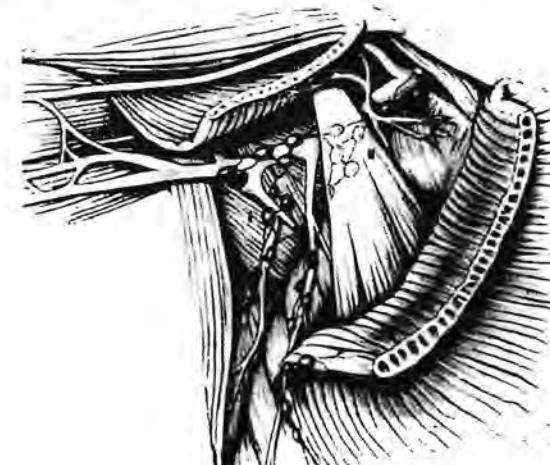



FIGURE 5.2.1 Neck dissection.

1.2.2 Axillary Lymph Node Dissection (Fig. 5.2.2)

- A complete axillary lymphadenectomy must include the removal of I, II, and III nodal levels in association with the minor pectoralis muscle.
- Also for this area the optimal number of excised lymph nodes is at least 20 [19].
- The evidence that only 18%–20% of these patients have further metastatic nodes at the CLND opened a discussion on the dissection of the axillary level III nodes.

- However, to date the standard recommendations remain a complete dissection including the axillary III nodal levels.

1.2.3 Inguinal-Crural (Superficial) and Iliac-Obturator (Deep) Lymph Node Dissection (Fig. 5.2.3)

- Patients with inguinal nodal metastatic disease should undergo either superficial (inguinal-crural) dissection or deep (iliac-obturator) dissection.
- This procedure must include the removal of the Cloquet node that is localized within the pelvis posteriorly and medially to the external iliac vein. The femoral nerve, running along the medial portion of the sartorius muscle, should be preserved while the saphenous vein is ligated at the level of the saphenofemoral junction and the femoral artery and vein are skeletonized.
- Iliac-obturator lymph node dissection via a lateral abdominal extraperitoneal approach. The ureter is identified and preserved, while the epigastric vessels are ligated and the external iliac vessels are visualized and skeletonized up to the bifurcation of the common iliac vessels. The obturator nerve is identified and preserved and

FIGURE 5.2.3 Groin iliac-obturator dissection.

finally the sartorius muscle is disengaged and rotated to cover and protect the femoral vessel.

- In this kind of dissection, the optimal number of removed lymph nodes could range between 15 and 25 [19].
- However, some surgeons perform only a superficial dissection in patients for whom there is an evidence of an inguinal microscopic nodal disease (SN-positive), although this procedure is not recommended due to the frequent detection of further positive pelvic nodes after the iliac-obturator dissection [19].

1.2.4 Lymph Node Dissection of Minor Basins

- The presence of metastatic nodal disease can be detected after a SNB or a clinical/radiological exam also in minor nodal basins, such as the popliteal and epitrochlear ones.
- In similar cases, the therapeutic indication consists in the removal of all the lymph nodes lying in those areas.

2 ADJUVANT THERAPY

Metastases to the regional lymph nodes are the most common first clinical manifestation of disease spread after the excision of the primary tumor or for unknown primary melanoma [26]. Systemic adjuvant therapy has been investigated over the past decades in stage III melanoma patients with high risk of relapse, due to the poor effectiveness of surgical treatment alone.

2.1 Interferon

- To date, IFN is the only approved agent for an adjuvant therapy of stage III melanoma in patients who had already undergone surgery and with high risk of recurrence.
- In particular, IFN alfa-2b was approved in Europe and the United States, the pegylated (Peg) form of IFN alfa-2b in the United States and Switzerland, and the IFN alfa-2a in Europe. The mechanism of action of IFN in melanoma appears to be mainly immunomodulatory, although it also has an antiproliferative activity [27-29].
- Many dose regimens have been tested over the years and metaanalyses of phase III trials demonstrated that IFN has a consistent effect on recurrence-free survival (RFS) and DFS, but none or very low effect on OS [30-35]. These findings suggest that only a few subsets of patients are sensitive to IFN.
- These trials stratified patients by SN staging and by the presence or absence of ulceration in the primary tumor.

Both stage and ulceration emerged as prognostic factors; in fact, patients with nodal micrometastases and nonulcerated primary tumors had a better prognosis than those with clinically detected node metastases and ulceration in the primary lesion [1,2].

There is no definitive evidence regarding the optimal dose and duration of therapy with this agent. The overall clinical evidence should be shared with melanoma patients with an intermediate-high risk of relapse after surgery and a discussion on the advantages and disadvantages of different regimens, including potential side effects, should support the decision of using IFN as an adjuvant agent.

2.2 The MAGE Protein Family

- Several immunotherapy strategies have recently shown that immune manipulation can mediate regression of malignancies. The discovery of tumor antigens and of T lymphocytes directed against them has provided the basis for antigen-specific immunotherapy [36].
- In the past decade, several vaccination strategies have been designed for different treatments.
- The MAGE-A3 gene is expressed during embryogenesis and in a great variety of tumors [37]. It is presented to specific T cells by HLA molecules at the cell surface as a tumor-specific antigen [38], while it is not expressed in normal adult tissues, except testis and placenta [39]. Thus, this represented a selective target for tumor-specific active immunotherapy.
- Pilot studies [40,41] showed that immunotherapy with recombinant MAGE-A3 protein had antitumor activity in patients with metastatic melanoma, with a good tolerability.

However, the preliminary evidence from a recent randomized trial showed that this therapeutic approach did not improve patient survival.

2.3 BRAF and NRAS Inhibitors

- The constitutive hyperactivation of the RAS/RAF/MEK/ERK pathway has been identified as the regulator of cell proliferation, invasion, and survival of melanocytic cells [42–46].
- The frequency of BRAF mutations varies between 40 and 70% in cutaneous melanoma [43,44,47], while NRAS mutations are present in 15%–30% of cutaneous melanomas [48,49].
- Many clinical trials are still testing the effectiveness and safety of these molecules in melanoma patients with intermediate/advanced disease. The first agent to be studied was vemurafenib. After the results of

clinical trials, this molecule was approved for treatment of metastatic melanoma [50]. Another BRAF inhibitor used for adjuvant treatment of stage III melanoma at high risk of recurrence is dabrafenib, approved as a single agent in the treatment of metastatic disease with BRAF V600E mutation [51–55]. The combination dabrafenib-trametinib was used as adjuvant therapy in stage III melanoma patients with BRAF V600E or K mutation. The combination of these targeted agents produced additive effects, but resistances occurred in most patients, with a short period of tumor control [56].

2.4 Anti-CTLA-4

- Longer responses in time seem to depend on immunologic control and are rarely obtained with chemotherapy or targeted therapies alone. This was first demonstrated by the effectiveness of anti-CTLA-4 molecules, resulting in the approval of ipilimumab, a monoclonal antibody against CTLA-4, for patients with advanced melanoma [57,58].
- The results of a recent randomized controlled trial evaluating the impact of adjuvant ipilimumab versus placebo in patients with advanced stage III melanoma indicated a significant impact on RFS (median RFS was 17 months in the placebo arm vs. 26 months in the treatment arm).
- As compared to targeted agents in BRAF-mutated melanomas, response rates with ipilimumab were slightly lower (i.e., ~10/–15%), but had longer durability (i.e., about 1.5–2 years) in melanoma mutated and nonmutated patients [57,58]. Recent results confirmed that immunotherapy with ipilimumab is associated with 2- to 5-year survival in about 20% of previously treated patients and in over 30% of naive ones [59].
- Adverse events were quite frequent, often with grade 3–4, and were generally immune-related. Most adverse events involved the gastrointestinal, hepatic, and endocrine systems, and most of them were managed and resolved.

2.5 Anti-PD-1/PD-L1

- The programmed death (PD)-1 receptor represents another key immune receptor expressed by activated T cells [60,61].
- The efficacy of the anti-PD-1 molecules nivolumab and pembrolizumab appears better than that of ipilimumab; response rates were higher, ranging from 30% to 50%. The durability of response is similar or longer than that induced by ipilimumab, and the toxicity profile is also much more favorable [62,63].

- High expression of PD-L1 on tumor cells is associated with a worse prognosis and survival in several kinds of cancers such as renal cell, pancreatic, hepatocellular, and ovarian carcinomas [65–68]. Recent data from a phase III trial showed better results in terms of effectiveness of pembrolizumab versus that of ipilimumab. The estimated 6-month progression-free survival (PFS) rates were 47.3% for pembrolizumab administered every 2 weeks, 46.4% for pembrolizumab administered every 3 weeks, and 26.5% for ipilimumab. The corresponding 12-month survival rates were 74.1, 68.4, and 58.2% [69].

In conclusion, the prognosis for patients with melanoma has improved radically over the past few years. The therapeutic approaches in use, as well as the availability of new molecules for adjuvant treatments in patients with stage III melanoma with high risk of recurrence after surgery, are becoming even more promising.

3 TREATMENT OF IN-TRANSIT METASTASES

3.1 In-Transit Metastases

- Five to 8% of melanoma patients will develop IT-mets.
- These lesions are tumor embolic expressions within the dermal and subdermal lymphatics and can occur between the site of the primary tumor and the draining regional lymph nodal basin.
- IT-mets often anticipate the appearance of systemic disease and are associated with 5-year survival rates of 69 and 52%, respectively, depending on the concomitant absence or presence of lymph node metastases [1].
- Various treatment options exist according to the presentation and can range from a single or a few lesions to several and/or bulky lesions (surgical resection of a limited disease is the curative approach, but treatment can be more difficult when the interval between new lesions is short, when numerous and bulky metastases are present and multiple treatment modalities have already been performed without results).

The currently available techniques to treat regional IT-mets include:

- Isolated limb perfusion and isolated limb infusion (Fig. 5.2.4): When melanoma IT-mets are confined to the extremities, the isolation of the affected limb from the systemic circulation represents an opportunity for such a therapeutic approach. Isolation can be achieved by surgical access to the artery and vein on iliac, femoral, popliteal, axillary, or brachial level. The artery and

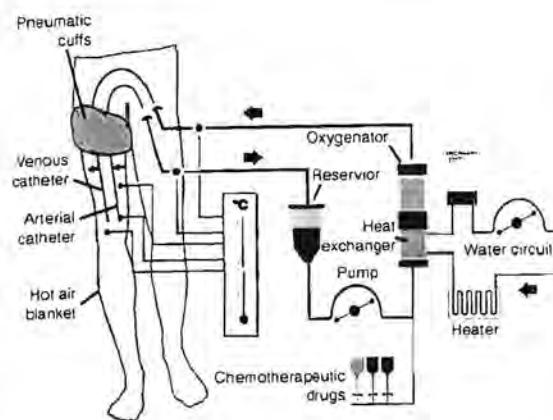


FIGURE 5.2.4 Regional perfusion.

vein are clamped and cannulated after which the catheters can be connected to a heart-lung machine to get an oxygenated circuit. To further isolate the limb, a tourniquet is placed proximal to the site of perfusion.

3.2 Isolated Limb Perfusion

- It achieves a 20-fold concentration of chemotherapeutic drugs when compared with systemic therapy [70–72].
- Melphalan (L-phenylalanine mustard) has been the standard drug used in ILP because of its efficacy and toxicity profile [73].
- Standard dosages: 10 mg/L for lower limbs and 13 mg/L for upper limbs.
- The major risk related to ILP is the potential leakage of the effective agents to the systemic circulation; therefore a careful leakage monitoring is mandatory.
- Since the introduction of ILP, some variables, such as temperature, drugs, and procedure indications have been analyzed to improve tumor response.
- The temperature of the skin has to be warmed during perfusion to prevent vasoconstriction in the dermal and epidermal tissues: especially in superficial IT-mets, application of a warm water mattress can improve local drug delivery (the uptake of the drug by IT-mets *in vivo* is twice as high at 39.5°C than at 37°C [74], and hyperthermia improves the uptake in tumor cells, especially at temperatures greater than 41°C [75,76]). However, tissue temperatures of 41.5–43°C during ILP could lead to severe side effects [77], but the local toxicity of these

procedures can lead to severe complications [78]. Mild hyperthermia for ILP is employed as a safer compromise between effectiveness of response and risk of high toxicity.

Tumor necrosis factor-alpha (TNF- α) was introduced in association with melphalan to improve the action of ILP [79]. TNF has a dual mechanism of action: the direct cytotoxic effect on high-dose TNF to tumor cells [80] and the effect that induces a hemorrhagic necrosis on tumor cells [81]. While the systemic employment of this cytokine must be carefully managed because of its important side effects [82], in the ILP the advantage of the TNF antitumor activity, in the absence of systemic effects, is increased in hyperthermic conditions with the addition of alkylating agents [83–85] (the dose of TNF of 1 mg for the arm and 2 mg for the leg is as effective as the higher doses) [86–89].

3.3 Isolated Limb Infusion

It was described by Thompson et al. as a simplified alternative to ILP [90]. Percutaneous arterial and venous catheters are placed in the affected extremity and a tourniquet is placed proximal to the catheter tips to allow isolation of the limb from the systemic circulation.

High dose of a cytotoxic combination of melphalan and actinomycin D is generally used; drugs are infused into a hyperthermic, limb via the arterial catheter and blood is withdrawn from the venous catheter to be reinfused into the arterial side. Drug circulation time is 20–30 min under mild hyperthermic conditions of 38–39°C. ILI is a quicker and safer procedure with response rates similar to those of ILP [91].

- Despite ILP and ILI achieving excellent responses in melanoma IT-mets, the aggressive biological behavior of melanoma determines frequent local recurrent disease in the limbs.
- Reported recurrence rates after perfusion are approximately 50%. Management of residual disease or of disease recurrence following ILP or ILI may include local treatment (by excision) of the remaining or recurrent lesions or ECT as an effective alternative technique to control local disease.
- ILP and ILI can be repeated in selected patients, with results comparable to those obtained using the same techniques at first approach [92,93].
- In consideration of the likelihood of extraregional spread of metastatic cells, patients with IT-mets from melanoma have generally a poor prognosis.
- The duration of survival after these locoregional events seems to be related to the effectiveness of the responses achieved by ILP or ILI; a complete response after these treatments was associated with a 5-year survival of 52 and 44 months, respectively [94,95].

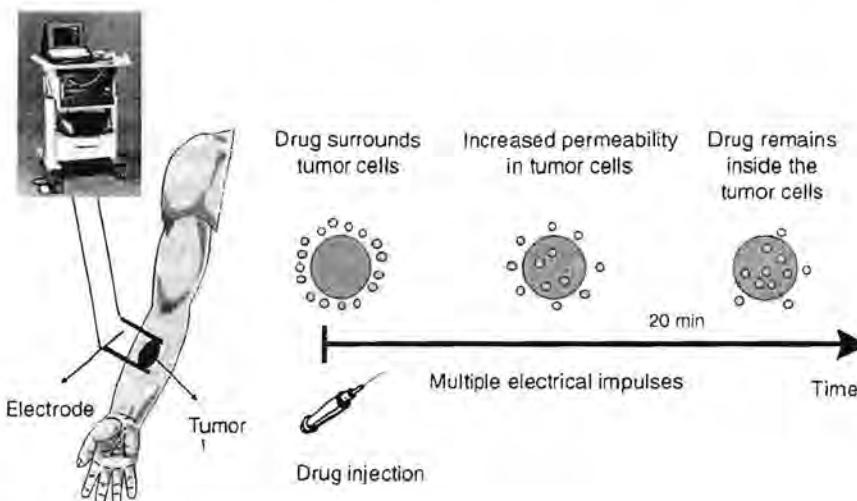


FIGURE 5.2.5 Electrochemotherapy (ECT).

- Consequently, a therapeutic approach with these techniques may be considered for subgroups of patients associated with a more favorable tumor biological behavior.

3.4 Electrochemotherapy (Fig. 5.2.5)

- It is an effective therapeutic option for treating melanoma cutaneous and subcutaneous metastases to achieve local tumor control and to preserve the patient's quality of life [96–108].
- The chemotherapeutic agent currently employed is bleomycin (15,000 units/m² i.v. in a bolus followed, within 8 min after intravenous injection, by the application of brief electric pulses to each tumor nodule).
- The main eligibility criteria are as follows:
 - Melanoma stage IIIB–C or IV (M1a) [1]
 - Lesions generally not deeper than 3 cm
 - No anticancer treatment 4 weeks before or 8 weeks after ECT treatment
 - Age ≥18 years
 - Eastern Cooperative Oncology Group (ECOG) performance status ≤2
- The main exclusion criteria include:
 - Allergy to bleomycin
 - Severe concomitant disease
 - T life expectancy less than 3 months

- Active infections
- Cardiac pacemaker
- Electric current is delivered by means of a 2- to 3-cm long needle electrode, according to lesion size. The electrodes are connected to a pulse generator that produces high voltages (up to 1000 V), but delivered as a compressed train of eight pulses at the frequency of 5000 Hz and 100 μ s duration, and are well tolerated by patients.
- ECT could be repeated every 8–12 weeks according to local response, the appearance of new lesions, and patients' compliance to treatment.
- ECT induces a reduction in blood flow within the treated area for up to 24 h, thus leading to tumor hypoxia that causes tumor cell destruction [109,110].
- ECT-induced tumor necrosis stimulates the release of tumor antigens, leading to a local inflammatory and immune reaction [111].

ECT represents an effective treatment option for intermediate-advanced stage melanoma patients with cutaneous and subcutaneous metastatic lesions.

3.5 Locoregional Treatments and Systemic Targeted Therapies

- Patients submitted to radical lymph node dissection, to ILP, ILI, or ECT, despite the excellent locoregional results, still have low survival rates. Moreover, these treatments are often associated with relevant side effects.
- In those cases where (poor) prognosis is generally determined by the disease biology, their employment is debated.
- The perspectives have significantly changed after the introduction of BRAF/NRAS/MEK inhibitors, anticytotoxic T-lymphocyte-associated (CTLA) protein-4 antibodies, and PD-1 pathway inhibitors.
- Most patients for whom these new molecules are employed have a stage IV disease, but an increasing number of trials are focusing on patients with unresectable stage III disease; in similar cases, the combination of two different drug delivery methods (systemic and isolated circuit) may represent a logical approach.

In conclusion, patients with extensive unresectable IT-mets, associated with an unfavorable survival, should be considered for an integrated therapeutic approach including ILP, ILI, or ECT plus targeted systemic agents.

3.6 Medical Therapy

- In stage III disease, in cases with many IT-mets or satellite metastases, or in cases of relapse notwithstanding repeated surgery, and when the latter is no longer feasible, there is the need for innovative treatment

options that may prevent or retard progression from stage III to stage IV (where recently approved systemic treatment options may be adequately employed).

- Intratumoral application of drugs is an appealing therapeutic concept, as high concentrations can be achieved within the tumor with lower systemic toxicity.
- Several cytokines have been used for intratumoral therapy with varying results [112–115].

IL-2 intratumoral treatment led to high rate of complete responses and, furthermore, showed an unexpectedly high 5-year OS rate of 61% for stage IIIB/C patients and 38% for stage IV patients [116,117].

Used as an intratumoral agent, TNF- α showed local antitumor activity [118].

- L19IL2 and L19TNF are clinical-stage immunocytokines, recombinant human fusion proteins comprising the cytokines IL-2 or TNF, fused to the monoclonal L19 antibody.
- The L19 antibody is a fully human antibody, capable of preferential localization around tumor blood vessels while sparing normal tissues [119,120]. L19, derived from a phage display library of human antibody fragments in the single-chain Fv (scFv) format, recognizes the alternatively spliced extra domain B (EDB) of fibronectin (FN), one of the best characterized markers of angiogenesis [119,121–124].
- L19IL2 is a recombinant fusion protein composed of two portions: L19 and IL-2.

L19IL2 has been already studied in advanced solid tumors (renal cell carcinoma [125] and pancreatic cancer).

Two studies aimed at assessing the antitumoral activity of systemic L19IL2 administration in combination with DTIC in patients with advanced metastatic melanoma have been carried out, as well as two other clinical trials aimed at assessing the intratumoral effect of L19IL2 either alone or in combination with L19TNF- α in patients suffering from stage III/IV M1a melanoma. These studies confirmed that L19IL2 can be safely and regularly administered to patients with metastatic melanoma.

The intralesional treatment of melanoma metastases with L19IL2 (up to 10 MioIU/week for 4 consecutive weeks) in stage III patients resulted in objective responses in about 50% of the lesions [126].

The treatment was generally well tolerated. Toxicities were usually mild, of short duration, and limited to inflammatory injection site reaction (local swelling and erythema) in most of treated patients.

- L19TNF is a recombinant fusion protein composed of two portions: L19 and TNF- α .
This product has been studied in two different clinical trials:
 - A phase I/II monotherapy study in patients with advanced solid tumors. The main conclusion from this study was that L19TNF can be administered to patients with advanced progressive solid tumors in an outpatient setting up to doses of 13 μ g/kg. The observed toxicity profile was mild and reversible [127].
 - A phase I trial in combination with melphalan in the ILP setting for the treatment of patients with metastatic melanoma lesions of the leg, who were candidates for amputation. Five patients were treated with 325 μ g and 10 patients with 650 μ g of L19TNF. The observed side effects of the L19TNF ILP procedure mainly consisted of reversible and manageable toxicities. Objective responses were observed in the majority of lesions (including some complete responses) while disease progressed outside the perfused limb, as expected. Some examples are shown in Fig. 5.2.4. According to the results of this study, L19TNF can be administered in combination with melphalan and mild hyperthermia, at a dose of 650 μ g, in patients with inoperable melanoma lesions of one leg [128].
- Recently, phase III trials have been designed to demonstrate the efficacy of intratumoral administration of L19IL2 + L19TNF followed by surgery in patients suffering from stage IIIB and IIIC metastatic melanoma, as compared to that of surgery alone, in improving RFS. Weekly intratumoral administration of a mixture of 10 MiolU L19IL2 in combination with 312 μ g of L19TNF for 4 consecutive weeks into injectable cutaneous/subcutaneous metastases is well tolerated, with few and generally mild recorded adverse events, and is associated with a high proportion of objective responses. Taken together, the benefits of intratumorally administered L19IL2 + L19TNF followed by surgery in terms of local tumor control and improvement of relapse-free survival and OS far outweigh the potential risks that are associated with such a treatment.

References

- [1] Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. *J Clin Oncol* 2009;27(36):6199–206.
- [2] Balch CM, Gershenwald JE, Soong SJ, et al. Multivariate analysis of prognostic factors among 2,313 patients with stage III melanoma: comparison of nodal micrometastases versus macrometastases. *J Clin Oncol* 2010;28(14):2452–9.
- [3] Gershenwald JE, Ross MI. Sentinel-lymph-node biopsy for cutaneous melanoma. *N Engl J Med* 2011;364(18):1738–45.
- [4] Ross MI, Thompson JF, Gershenwald JE. Sentinel lymph node biopsy for melanoma: critical assessment at its twentieth anniversary. *Surg Oncol Clin N Am* 2011;20(1):57–78.

- [5] Balch CM, Morton DL, Gershenwald JE, et al. Sentinel node biopsy and standard of care for melanoma. *J Am Acad Dermatol* 2009;60(5):872–5.
- [6] Valsecchi ME, Silbermann D, de Rosa N, Wong SL, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in patients with melanoma: a meta-analysis. *J Clin Oncol* 2011;29(11):1479–87.
- [7] Wrightson WR, Wong SL, Edwards MJ, et al. Complications associated with sentinel lymph node biopsy for melanoma. *Ann Surg Oncol* 2003;10(6):676–80.
- [8] Sondak VK, Taylor JM, Sabel MS, et al. Mitotic rate and younger age are predictors of sentinel lymph node positivity: lessons learned from the generation of a probabilistic model. *Ann Surg Oncol* 2004;11(3):247–58.
- [9] Sabel MS, Rice JD, Griffith KA, et al. Validation of statistical predictive models meant to select melanoma patients for sentinel lymph node biopsy. *Ann Surg Oncol* 2012;19(1):287–93.
- [10] Morton DL, Cochran AJ, Thompson JF, et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. *Ann Surg* 2005;242(3):302–11. [discussion 11–3].
- [11] Morton DL, Thompson JF, Cochran AJ, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. *N Engl J Med* 2014;370(7):599–609.
- [12] McMasters KM, Noyes RD, Reintgen DS, et al. Lessons learned from the Sunbelt Melanoma Trial. *J Surg Oncol* 2004;86(4):212–23.
- [13] van der Ploeg AP, van Akkooi AC, Haydu LE, et al. The prognostic significance of sentinel node tumour burden in melanoma patients: an international, multicenter study of 1539 sentinel node-positive melanoma patients. *Eur J Cancer* 2014;50(1):111–20.
- [14] Leung AM, Morton DL, Ozao-Choy J, et al. Staging of regional lymph nodes in melanoma: a case for including nonsentinel lymph node positivity in the American Joint Committee on Cancer staging system. *JAMA Surg* 2013;148(9):879–84.
- [15] Faries MB, Thompson JF, Cochran AJ, et al. The impact on morbidity and length of stay of early versus delayed complete lymphadenectomy in melanoma: results of the Multicenter Selective Lymphadenectomy Trial (I). *Ann Surg Oncol* 2010;17(12):3324–9.
- [16] Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. *N Engl J Med* 2006;355(13):1307–17.
- [17] Morton DL. Overview and update of the phase III Multicenter Selective Lymphadenectomy Trials (MSLT-I and MSLT-II) in melanoma. *Clin Exp Metastasis* 2012;29(7):699–706.
- [18] Ascierto PA, Gogas HJ, Grob JJ, et al. Adjuvant interferon alfa in malignant melanoma: an interdisciplinary and multinational expert review. *Crit Rev Oncol Hematol* 2013;85(2):149–61.
- [19] Rossi CR, Mozzillo N, Maurichi A, et al. Number of excised lymph nodes as a quality assurance measure for lymphadenectomy in melanoma. *JAMA Surg* 2014;149(7):700–6.
- [20] van Akkooi AC, de Wilt JH, Verhoef C, et al. Clinical relevance of melanoma micrometastases (<0.1 mm) in sentinel nodes: are these nodes to be considered negative? *Ann Oncol* 2006;17(10):1578–85.
- [21] van Akkooi AC, Nowecki ZI, Voit C, et al. Sentinel node tumor burden according to the Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: a multicenter study in 388 patients with positive sentinel nodes. *Ann Surg* 2008;248(6):949–55.
- [22] van Akkooi AC, Verhoef C, Eggermont AM. Importance of tumor load in the sentinel node in melanoma: clinical dilemmas. *Nat Rev Clin Oncol* 2010;7(8):446–54.
- [23] van der Ploeg AP, van Akkooi AC, Rutkowski P, et al. Prognosis in patients with sentinel node-positive melanoma is accurately defined by the combined Rotterdam tumor load and Dewar topography criteria. *J Clin Oncol* 2011;29(16):2206–14.
- [24] Wong SL, Balch CM, Hurley P, et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. *J Clin Oncol* 2017;35(23):7912–8.

- [25] Wong SL, Balch CM, Hurley P, et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. *Ann Surg Oncol* 2012;19(11):3313–24.
- [26] Leiter U, Meier F, Schittek B, Garbe C. The natural course of cutaneous melanoma. *J Surg Oncol* 2004;86(4):172–8.
- [27] Dummer R, Mangana J. Long-term pegylated interferon-alpha and its potential in the treatment of melanoma. *Biologics* 2009;3:169–82.
- [28] Wang W, Edington HD, Rao UN, et al. Modulation of signal transducers and activators of transcription 1 and 3 signaling in melanoma by high-dose IFNalpha2b. *Clin Cancer Res* 2007;13(5):1523–31.
- [29] Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. *Clin Cancer Res* 2011;17(9):2619–27.
- [30] Wheatley K, Ives N, Hancock B, Gore M, Eggermont A, Suciu S. Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. *Cancer Treat Rev* 2003;29(4):241–52.
- [31] Wheatley K, Ives N, Eggermont A, et al. Interferon-[alpha] as adjuvant therapy for melanoma: an individual patient data meta-analysis of randomised trials. ASCO annual meeting proceedings. *J Clin Oncol* 2007;25:8526.
- [32] Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. *J Natl Cancer Inst* 2010;102(7):493–501.
- [33] Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. *Lancet* 2008;372(9633):117–26.
- [34] Eggermont AM, Suciu S, MacKie R, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. *Lancet* 2005;366(9492):1189–96.
- [35] Flaherty LE, Moon J, Atkins MB, et al. Phase III trial of high-dose interferon alpha-2b versus cisplatin, vinblastine, DTIC plus IL-2 and interferon in patients with high-risk melanoma (SWOG S0008): an intergroup study of CALGB, COG, ECOG, and SWOG. ASCO annual meeting. *J Clin Oncol* 2012;30.
- [36] Finn OJ. Cancer immunology. *N Engl J Med* 2008;358(25):2704–15.
- [37] Van den Eynde BJ, van der Bruggen P. T cell defined tumor antigens. *Curr Opin Immunol* 1997;9(5):684–93.
- [38] De Plaen E, Arden K, Traversari C, et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. *Immunogenetics* 1994;40(5):360–9.
- [39] Jungbluth AA, Silva WA Jr, Iversen K, et al. Expression of cancer-testis (CT) antigens in placenta. *Cancer Immun* 2007;7:15.
- [40] Marchand M, Punt CJ, Aamdal S, et al. Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. *Eur J Cancer* 2003;39(1):70–7.
- [41] Kruit WH, van Ojik HH, Brichard VG, et al. Phase 1/2 study of subcutaneous and intra-dermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. *Int J Cancer* 2005;117(4):596–604.
- [42] Hocker TL, Singh MK, Tsao H. Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. *J Invest Dermatol* 2008;128(11):2575–95.
- [43] Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. *Nature* 2002;417(6892):949–54.
- [44] Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. *N Engl J Med* 2005;353(20):2135–47.

- [45] Garrido MC, Bastian BC. KIT as a therapeutic target in melanoma. *J Invest Dermatol* 2010;130(1):20–7.
- [46] Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. *J Invest Dermatol* 2004;122(2):342–8.
- [47] Gorden A, Osman I, Gai W, et al. Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. *Cancer Res* 2003;63(14):3955–7.
- [48] Edlund-Rose E, Egyhazi S, Omholt K, et al. NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. *Melanoma Res* 2006;16(6):471–8.
- [49] Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. *J Invest Dermatol* 2006;126(1):154–60.
- [50] Swaika A, Crozier JA, Joseph RW. Vemurafenib: an evidence-based review of its clinical utility in the treatment of metastatic melanoma. *Drug Des Devel Ther* 2014;8:775–87.
- [51] GlaxoSmithKline. Highlights of prescribing information of Tafinlar (dabrafenib capsules). Brentford, UK: GlaxoSmithKline; 2014.
- [52] GlaxoSmithKline. Two new GSK oral oncology treatments, BRAF-inhibitor Tafinlar (dabrafenib) capsules and the first MEK-inhibitor Mekinist (trametinib) tablets, approved by FDA as single-agent therapies. Brentford, UK: GlaxoSmithKline; 2014.
- [53] Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. *N Engl J Med* 2011;364(26):2507–16.
- [54] Hauschild A, Grob JJ, Dermidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. *Lancet* 2012;380(9839):358–65.
- [55] Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. *N Engl J Med* 2012;367(2):107–14.
- [56] Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. *N Engl J Med* 2012;367(18):1694–703.
- [57] Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med* 2010;363(8):711–23.
- [58] Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. *N Engl J Med* 2011;364(26):2517–26.
- [59] Lebbé C, Weber JS, Maio M, Neyns B, Harmankaya K. Long-term survival in patients with metastatic melanoma who received ipilimumab in four phase II trials. ASCO Annual Meeting. *J Clin Oncol* 2013;31.
- [60] Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. *Annu Rev Immunol* 2005;23:515–48.
- [61] Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. *Proc Natl Acad Sci USA* 2001;98(24):13866–71.
- [62] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. *N Engl J Med* 2012;366(26):2443–54.
- [63] Sznol M, Kluger HM, Hodi FS, et al. Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538). *J Clin Oncol* 2013;31.
- [64] Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. *N Engl J Med* 2013;369(2):134–44.
- [65] Thompson RH, Dong H, Lohse CM, et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. *Clin Cancer Res* 2007;13(6):1757–61.
- [66] Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. *Clin Cancer Res* 2007;13(7):2151–7.

- [67] Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. *Clin Cancer Res* 2009;15(3):971-9.
- [68] Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. *Proc Natl Acad Sci USA* 2007;104(9):3360-5.
- [69] Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. *N Engl J Med* 2015;372(26):2521-32.
- [70] Creech O Jr, Krementz ET, Ryan RF, Winblad JN. Chemotherapy of cancer: regional perfusion utilizing an extracorporeal circuit. *Ann Surg* 1958;148(4):616-32.
- [71] Benckhuijsen C, Kroon BB, van Geel AN, Wieberdink J. Regional perfusion treatment with melphalan for melanoma in a limb: an evaluation of drug kinetics. *Eur J Surg Oncol* 1988;14(2):157-63.
- [72] Vrouenraets BC, Nieweg OE, Kroon BB. Thirty-five years of isolated limb perfusion for melanoma: indications and results. *Br J Surg* 1996;83(10):1319-28.
- [73] Thompson JF, Gianoutsos MP. Isolated limb perfusion for melanoma: effectiveness and toxicity of cisplatin compared with that of melphalan and other drugs. *World J Surg* 1992;16(2):227-33.
- [74] Omlor G. Optimization of isolated hyperthermic limb perfusion. *World J Surg* 1993;17(1):134.
- [75] Cavaliere R, Ciocatto EC, Giovanella BC, et al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. *Cancer* 1967;20(9):1351-81.
- [76] Clark J, Grabs AJ, Parsons PG, Smithers BM, Addison RS, Roberts MS. Melphalan uptake, hyperthermic synergism and drug resistance in a human cell culture model for the isolated limb perfusion of melanoma. *Melanoma Res* 1994;4(6):365-70.
- [77] Di Filippo F, Anza M, Rossi CR, et al. The application of hyperthermia in regional chemotherapy. *Semin Surg Oncol* 1998;14(3):215-23.
- [78] Kroon BB, Klaase JM, van Geel AN. Application of hyperthermia in regional isolated perfusion for melanoma of the limbs. *Reg Cancer Treat* 1992;4:223-6.
- [79] Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. *Proc Natl Acad Sci USA* 1975;72(9):3666-70.
- [80] Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. *Science* 1985;230(4728):943-5.
- [81] Watanabe N, Niitsu Y, Umeno H, et al. Toxic effect of tumor necrosis factor on tumor vasculature in mice. *Cancer Res* 1988;48(8):2179-83.
- [82] Feldman ER, Creagan ET, Schaid DJ, Ahmann DL. Phase II trial of recombinant tumor necrosis factor in disseminated malignant melanoma. *Am J Clin Oncol* 1992;15(3):256-9.
- [83] Watanabe N, Niitsu Y, Umeno H, et al. Synergistic cytotoxic and antitumor effects of recombinant human tumor necrosis factor and hyperthermia. *Cancer Res* 1988;48(3):650-3.
- [84] Regenass U, Muller M, Curschellas E, Matter A. Anti-tumor effects of tumor necrosis factor in combination with chemotherapeutic agents. *Int J Cancer* 1987;39(2):266-73.
- [85] Lienard D, Ewelenko P, Delmotte JJ, Renard N, Lejeune FJ. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. *J Clin Oncol* 1992;10(1):52-60.
- [86] de Wilt JH, Manusama ER, van Tiel ST, van IJken MG, ten Hagen TL, Eggermont AM. Prerequisites for effective isolated limb perfusion using tumour necrosis factor alpha and melphalan in rats. *Br J Cancer* 1999;80(1-2):161-6.
- [87] Bonvalot S, Laplanche A, Lejeune F, et al. Limb salvage with isolated perfusion for soft tissue sarcoma: could less TNF-alpha be better? *Ann Oncol* 2005;16(7):1061-8.
- [88] Hill S, Fawcett WJ, Sheldon J, Soni N, Williams T, Thomas JM. Low-dose tumour necrosis factor alpha and melphalan in hyperthermic isolated limb perfusion. *Br J Surg* 1993;80(8):995-7.

- [89] Rossi CR, Foletto M, Mocellin S, Pilati P, Lise M. Hyperthermic isolated limb perfusion with low-dose tumor necrosis factor-alpha and melphalan for bulky in-transit melanoma metastases. *Ann Surg Oncol* 2004;11(2):173-7.
- [90] Thompson JF, Waugh RC, Schachter CW. Isolated limb infusion with melphalan for recurrent limb melanoma: a simple alternative to isolated limb perfusion. *Reg Cancer Treat* 1994;7:188-92.
- [91] Kroon HM, Moncrieff M, Kam PC, Thompson JF. Factors predictive of acute regional toxicity after isolated limb infusion with melphalan and actinomycin D in melanoma patients. *Ann Surg Oncol* 2009;16(5):1184-92.
- [92] Grunhagen DJ, van Etten B, Brunstein F, et al. Efficacy of repeat isolated limb perfusions with tumor necrosis factor alpha and melphalan for multiple in-transit metastases in patients with prior isolated limb perfusion failure. *Ann Surg Oncol* 2005;12(8):609-15.
- [93] Kroon HM, Lin DY, Kam PC, Thompson JF. Efficacy of repeat isolated limb infusion with melphalan and actinomycin D for recurrent melanoma. *Cancer* 2009;115(9):1932-40.
- [94] Deroose JP, Eggermont AM, van Geel AN, de Wilt JH, Burger JW, Verhoef C. 20 years experience of TNF-based isolated limb perfusion for in-transit melanoma metastases: TNF dose matters. *Ann Surg Oncol* 2012;19(2):627-35.
- [95] Kroon HM, Moncrieff M, Kam PC, Thompson JF. Outcomes following isolated limb infusion for melanoma. A 14-year experience. *Ann Surg Oncol* 2008;15(11):3003-13.
- [96] Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM. Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. *Cancer* 1993;72(12):3694-700.
- [97] Mir LM, Orlowski S. Mechanisms of electrochemotherapy. *Adv Drug Deliv Rev* 1999;35(1):107-18.
- [98] Mir LM, Glass LF, Sersa G, et al. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. *Br J Cancer* 1998;77(12):2336-42.
- [99] Rols MP, Bachaud JM, Giraud P, Chevreau C, Roche H, Teissie J. Electrochemotherapy of cutaneous metastases in malignant melanoma. *Melanoma Res* 2000;10(5):468-74.
- [100] Byrne CM, Thompson JF, Johnston H, et al. Treatment of metastatic melanoma using electroporation therapy with bleomycin (electrochemotherapy). *Melanoma Res* 2005;15(1):45-51.
- [101] Gaudy C, Richard MA, Folchetti G, Bonerandi JJ, Grob JJ. Randomized controlled study of electrochemotherapy in the local treatment of skin metastases of melanoma. *J Cutan Med Surg* 2006;10(3):115-21.
- [102] Larkin JO, Collins CG, Aarons S, et al. Electrochemotherapy: aspects of preclinical development and early clinical experience. *Ann Surg* 2007;245(3):469-79.
- [103] Sersa G, Stabuc B, Cemazar M, Miklavcic D, Rudolf Z. Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. *Melanoma Res* 2000;10(4):381-5.
- [104] Domenge C, Orlowski S, Luboinski B, et al. Antitumor electrochemotherapy: new advances in the clinical protocol. *Cancer* 1996;77(5):956-63.
- [105] Campana LG, Mocellin S, Basso M, et al. Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients. *Ann Surg Oncol* 2009;16(1):191-9.
- [106] Kis E, Olah J, Ocsai H, et al. Electrochemotherapy of cutaneous metastases of melanoma—a case series study and systematic review of the evidence. *Dermatol Surg* 2011;37(6):816-24.
- [107] Marty M, Sersa G, Garbay JR, et al. Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE study. *Eur J Cancer Suppl* 2006;4:3-13.
- [108] Mir LM, Gehl J, Sersa G, et al. Standard operating procedures of the electrochemotherapy for the use of bleomycin or cisplatin administered either systemically

or locally and electric pulses delivered by the Cliniporator by means of invasive or non-invasive electrodes. *Eur J Cancer Suppl* 2006;4:14–25.

[109] Markelc B, Sersa G, Cemazar M. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. *PLoS One* 2013;8(3):e59557.

[110] Sersa G, Jarm T, Kotnik T, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. *Br J Cancer* 2008;98(2):388–98.

[111] Reinhold U. Electrochemotherapy of skin tumors. *Hautarzt* 2011;62(7):549–58. [quiz 59].

[112] Cornejo P, Vanaclocha F, Polimon I, Del Rio R. Intralesional interferon treatment of lentigo maligna. *Arch Dermatol* 2000;136(3):428–30.

[113] Vaquerano JE, Cadbury P, Treseler P, Sagebier R, Leong SP. Regression of in-transit melanoma of the scalp with intralesional recombinant human granulocyte-macrophage colony-stimulating factor. *Arch Dermatol* 1999;135(10):1276–7.

[114] von Wussow P, Block B, Hartmann F, Deicher H. Intralesional interferon-alpha therapy in advanced malignant melanoma. *Cancer* 1988;61(6):1071–4.

[115] Gutwald J, Groth W, Mahrle G. Peritumoral administered IL-2-induced tumor regression in melanoma. Pilot study. *Hautarzt* 1994;45(8):536–40.

[116] Radny P, Caroli UM, Bauer J, et al. Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. *Br J Cancer* 2003;89(9):1620–6.

[117] Weide B, Derhovanessian E, Pflugfelder A, et al. High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. *Cancer* 2010;116(17):4139–46.

[118] Bartsch HH, Pfizenmaier K, Schroeder M, Nagel GA. Intralesional application of recombinant human tumor necrosis factor alpha induces local tumor regression in patients with advanced malignancies. *Eur J Cancer Clin Oncol* 1989;25(2):287–91.

[119] Neri D, Bicknell R. Tumour vascular targeting. *Nat Rev Cancer* 2005;5(6):436–46.

[120] Trachsel E, Neri D. Antibodies for angiogenesis inhibition, vascular targeting and endothelial cell transcytosis. *Adv Drug Deliv Rev* 2006;58(5–6):735–54.

[121] Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. *Int J Cancer* 2002;102(1):75–85.

[122] Carnemolla B, Neri D, Castellani P, et al. Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. *Int J Cancer* 1996;68(3):397–405.

[123] Castellani P, Borsi L, Carnemolla B, et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. *Am J Pathol* 2002;161(5):1695–700.

[124] Rybak JN, Trachsel E, Scheuermann J, Neri D. Ligand-based vascular targeting of disease. *ChemMedChem* 2007;2(1):22–40.

[125] Johannsen M, Spitaleri G, Curigliano G, et al. The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. *Eur J Cancer* 2010;46(16):2926–35.

[126] Weide B, Eigentler TK, Pflugfelder A, et al. Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. *Cancer Immunol Res* 2014;2(7):668–78.

[127] Spitaleri G, Berardi R, Pierantoni C, et al. Phase I/II study of the tumour-targeting human monoclonal antibody–cytokine fusion protein L19-TNF in patients with advanced solid tumours. *J Cancer Res Clin Oncol* 2013;139(3):447–55.

[128] Papadia F, Basso V, Patuzzo R, et al. Isolated limb perfusion with the tumor-targeting human monoclonal antibody–cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. *J Surg Oncol* 2013;107(2):173–9.

Further Reading

Wong SL, Morton DL, Thompson JF, et al. Melanoma patients with positive sentinel nodes who did not undergo completion lymphadenectomy: a multi-institutional study. *Ann Surg Oncol* 2006;13(6):809–16.

Kingham TP, Panageas KS, Ariyan CE, Busam KJ, Brady MS, Coit DG. Outcome of patients with a positive sentinel lymph node who do not undergo completion lymphadenectomy. *Ann Surg Oncol* 2010;17(2):514–20.

Calabro A, Singletary SE, Balch CM. Patterns of relapse in 1001 consecutive patients with melanoma nodal metastases. *Arch Surg* 1989;124(9):1051–5.

Grunhagen DJ, de Wilt JH, ten Hagen TL, Eggermont AM. Technology insight: utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. *Nat Clin Pract Oncol* 2006;3(2):94–103.

Lejeune FJ, Lienard D, Matter M, Ruegg C. Efficiency of recombinant human TNF in human cancer therapy. *Cancer Immun* 2006;6:6.

Nishimura T, Ohta S, Sato N, Togashi Y, Goto M, Hashimoto Y. Combination tumor-immunotherapy with recombinant tumor necrosis factor and recombinant interleukin 2 in mice. *Int J Cancer* 1987;40(2):255–61.

Schwager K, Hemmerle T, Aebischer D, Neri D. The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. *J Invest Dermatol* 2013;133(3):751–8.

SUBCHAPTER

5.3

The Treatment of Stage IV Metastatic Melanoma

Pietro Quaglino, Paolo Fava, Maria T. Fierro

University of Turin, Turin, Italy

1 PATIENT CHARACTERISTICS, DISEASE EVALUATION, AND TREATMENT OPTIONS

There are some parameters that may correctly drive our evaluation on the best treatment for the patient we are dealing with (Table 5.3.1).

* Clinical scenario examples:

- If low tumor burden (e.g., one or two localized mets), low progression pattern, and good PS:
 - Local therapies (surgery)