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Introduzione

Il mondo dei propulsori è un'ampia sfera che abbraccia svariate discipline scien-
ti�che ed è fortemente condizionato dall'evoluzione tecnologica che scandisce il
progresso della nostra civiltà. Con il susseguirsi di nuove scoperte, spinte da ri-
cerche che esplorano i limiti della realtà che conosciamo, si aprono nuove strade
e si istituiscono nuovi metodi per migliorare gli strumenti di cui già disponiamo,
con i quali è possibile tendere a orizzonti prima irraggiungibili. In tal senso,
anche la realtà dei motori a combustione interna è in continua trasformazione,
grazie all'utilizzo di combustibili alternativi, tecniche innovative e nuovi mate-
riali. Su questi aspetti è decisamente molto sensibile l'azienda FPT Industrial
(Fiat Powertrain Technologies) del gruppo CNH Industrial, di cui faccio
parte, che si è a�ermata come punto di riferimento nel mercato dei propulsori
per applicazioni veicolari industriali on-road, o�-road, marine e power genera-
tion. In modo particolare lo studio di nuove soluzioni che tutelino l'ambiente,
senza rinunciare a buone prestazioni e a�dabilità del prodotto, è prerogativa dei
centri R&D di FPT Industrial, sparsi nel mondo. É proprio in uno di questi
Testing Centre, situato a Foggia, che si conduce una buona fetta della attività
di ricerca sui motori alimentati da NG (Gas Naturale, che nel linguaggio comu-
ne è semplicemente chiamato Metano), che costituisce una delle s�de cruciali
del mercato dei propulsori in questo particolare periodo storico ed è in questa
realtà pugliese che svolgo la mia attività lavorativa. I ritmi di evoluzione delle
tecnologie, tuttavia, sembrerebbero più lenti rispetto a quelli del preoccupante
deterioramento del nostro ecosistema, a cui stiamo tragicamente assistendo con
maggiore enfasi negli ultimi anni. Per questa ragione è indispensabile concentra-
re il più possibile gli sforzi perché i risultati dei test condotti nelle nostre sale
prova motore siano allo stesso tempo tempestivi e a�dabili.
A tale scopo è stato concepito questo progetto, che nasce dall'intenzione di va-
lidare i risultati dei test, approcciando ai dati raccolti in quanto tali. Spesso le
acquisizioni fatte in sala prova nascondono molte informazioni di di�cile accesso,
dal momento che sono disperse in un quantitativo molto grande di dati. Nell'ot-
tica di sempli�care il lavoro di interpretazione o di condurre un'operazione di
Data Mining, può essere utile usare algoritmi diMachine Learning. Quest'i-
dea è stata applicata alla necessità di un immediato controllo di plausibilità sui
risultati dei test: lo scopo di questo progetto è l'implementazione del-
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lo strumento di validazione AITV (Arti�cial Intelligence Test Validator),
basato su un modello predittivo con Intelligenza Arti�ciale, che ha il �ne di
validare la consistenza dei risultati raccolti. AITV apprende su un training set
costituito dai dati relativi ai test e�ettuati, sistematicamente raccolti. Essi con-
sistono di parametri generali di input, che possono caratterizzare e in�uenzare il
test, e di risultati calcolati in fase di post-elaborazione. Il modello così ottenuto
è in grado di stimare il risultato di una nuova prova a partire dai parametri di
input, permettendo così di confrontare la predizione con il risultato realmente
calcolato dalla post-elaborazione e l'esito di questo confronto può quindi contri-
buire a determinare la validità del risultato ottenuto.
Per rendere possibile un'operazione del genere, è necessario dunque realizzare un
ampio sistema che abbracci e coinvolga l'intera piattaforma di test, dall'automa-
zione di sala prova al post-processing dei dati, passando per le aree di
archiviazione. Realizzare un'architettura del genere è il solo modo per fruire
delle potenzialità di AITV, che vanno ad aggiungersi a diverse altre tecniche di
validazione comunemente adoperate per i risultati delle attività di ricerca in sala
prova.
Nel primo capitolo di questo elaborato è o�erta una breve panoramica dei con-
cetti fondamentali che regolano l'attività di test sui motori e degli strumenti di
cui ci si è serviti per realizzare questo progetto. Il secondo capitolo introduce
invece l'architettura del sistema creato e illustra alcuni dei concetti che saranno
maggiormente approfonditi nel successivo terzo capitolo, dedicato alla dettaglia-
ta descrizione tecnica della struttura implementata. Il quarto capitolo è in�ne
dedicato ad un caso di studio che concerne il Lambda Step, una tipologia di test
e�ettuato in sala prova, tramite il quale è valutata la Oxygen Storage Capacity
(OSC) dei catalizzatori in prova. Nell'ultima sezione, dedicata alle conclusioni,
saranno brevemente discussi i risultati di questo progetto e saranno dettagliate
diverse idee per futuri sviluppi.
In conclusione, lo strumento proposto in questa tesi è progettato per o�rire un
supporto agli ingegneri responsabili della valutazione dei risultati ottenuti dalle
attività di ricerca svolte, senza pretendere di sostituire le preesistenti tecniche
di validazione basate su studi dei fenomeni chimici e �sici che regolano emissio-
ni, consumi e prestazioni dei nostri motori. Lo spettro d'applicazione di questo
sistema è potenzialmente ampio e sebbene l'interesse primario sia ottenere una
sempre maggiore con�denza nei risultati dei test, il suo impiego potrebbe fare
luce su correlazioni �nora sottovalutate tra grandezze protagoniste delle nostre
ricerche.
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Capitolo 1

Attività R&D in Sala Prova Motori

Dal 26/04/2017 occupo la posizione di Automation Engineer presso il Testing
Centre FPT di Foggia1. La mia azienda, FPT (FIAT Powertrain Technologies)
Industrial, è un brand del gruppo CNH Industrial, che progetta e produce mo-
topropulsori per applicazioni on-road, o�-road, marine e power generation. La
posizione che ricopro trova collocamento nel ramo d'ingegneria2, responsabile di
progettazione e test dei motori, dalla fase prototipale alle prove su veicolo.
Tali attività di ricerca e sviluppo - �nalizzate per esempio ad incrementare le
prestazioni o a ridurre emissioni e consumi o a provare l'a�dabilità nel tempo
di nuovi componenti - sono condotte principalmente in appositi laboratori, noti
come sale prova motore, dotati di strumentazione di misura avanzata e serviti
da numerosi e complessi impianti.
Il Testing Center di Foggia, uno dei 6 poli R&D di FPT Industrial distribuiti
nel mondo, è ubicato all'interno di un ampio stabilimento di produzione FPT
e sebbene sia piccolo riveste attualmente un ruolo di particolare rilievo: è prin-
cipalmente a Foggia infatti che sono sviluppati - e omologati - i motori NG3

di FPT, un'applicazione di cruciale importanza nel mercato odierno, segnato da
una stigmatizzazione dei motori a combustione interna tradizionali.

1.1 FPT Industrial

La società, nata nel 2011 da una scissione parziale di Fiat Group, è considerato
uno dei principali attori nel mercato dei motopropulsori agricoli, industriali e
marini: produce motori, cambi e trasmissioni e vende non solo ai brand dello

1Loc. Incoronata.
2In particolare nella divisione Product Engineering - Engineering Services &

Prototype.
3Natural Gas, combustibile composto principalmente da metano (CH4)
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Figura 1.1: Logo di FPT Industrial.

stesso gruppo CNH Industrial4, ma anche ad altre aziende esterne. Un altro set-
tore di spicco per i prodotti FPT è costituito dalle competizioni sportive marine,
in modo particolare la disciplina o�shore, che prende il nome proprio dall'omo-
nimo tipo di imbarcazione, in grado di raggiungere elevate velocità.
Proponendo una breve descrizione ristretta al settore in cui è coinvolto il centro
R&D di Foggia, la gamma di motori prodotti da FPT spazia tra taglia leggera,
media e pesante e sono diverse le tecnologie all'avanguardia sviluppate e utilizzate
per questi propulsori. Le applicazioni sono principalmente:

� On-road, che fa riferimento ai trasporti su strada e prevede l'impiego delle
famiglie F1, NEF e CURSOR, con una cilindrata che va da 2.3 a 12.9
litri, power rate da 97 a 570 cavalli e coppia massima da 240 a 2500 Nm.
Comprende le seguenti tipologie di veicolo:

� LCV (Light Commercial Vehicles)

� Trucks

� Buses

� Agricolture, che prevede diverse soluzioni per ogni applicazione agricola,
dai trattori alle macchine di mietitura e raccolta.

� Construction, che impiega 5 famiglie di motori e prevede una gran-
de �essibilità, adattandosi a escavatori, pale caricatrici, pale compatte,
motolivellatrici, dozers, carrelli elevatori, spazzaneve e gru.

Concentrando inoltre l'attenzione sulle tecnologie Alternative Fuels, i motori Na-
tural Gas di FPT presentano emissioni di inquinanti nocivi estremamente bas-
se, in modo particolare riducono notevolmente le emissioni di CO2, importanti
responsabili del riscaldamento globale. Questo eco-bene�t, insieme all'abbatti-
mento della rumorosità dei motori e a costi del carburante molto bassi, fanno

4Iveco, Iveco Bus, Case Construction Equipment, New Holland Agricolture, solo per citarne
alcuni.
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di questi propulsori una valida alternativa al Diesel per veicoli leggeri, medi e
pesanti, da diversi punti di vista:

� Prestazioni: questi motori hanno derivazione Diesel e possono garanti-
re performance confrontabili (range di power rate da 136 a 400 cavalli).
Grazie alle tecniche impiegate, garantiscono una combustione stabile e una
risposta immediata nei transitori.

� E�cienza: il risparmio sul carburante rispetto al Diesel è stimato intorno
al 30% ed è massimizzata la �essibilità in un'ampia gamma di qualità del
gas.

� A�dabilità: l'esperienza di FPT nel Natural Gas è ventennale e può
vantare il primissimo impiego della tecnologia stechiometrica, divenuta poi
uno standard. É previsto per questi motori un cambio olio ogni 75000 km
(best in class).

� Sistema After-Treatment: non è necessario l'impiego di EGR, SCR o
DPF per ottenere emissioni al di sotto dei limiti di normativa, perciò è
previsto l'impiego di un semplice 3-way catalyst, rendendo estremamente
competitivo il TCO (Total Cost of Ownership) dei prodotti Natural Gas.

In�ne va speci�cato che questi motori possono essere alimentati dal combustibile
Natural Gas nelle forme Compressa (CNG), Liquida (LNG) e rinnovabile (bio-
metano), quest'ultimo in particolare costituisce la migliore alternativa "green",
in grado di portare le emissioni di CO2 a valori più bassi addirittura del 100%
rispetto al Diesel.
Come anticipato nel paragrafo precedente, nel centro R&D di Foggia sono con-
dotte attività di ricerca e sviluppo esclusivamente su motori NG: questo è uno
stimolo enorme per me e per i miei colleghi, per via delle numerose innovazioni
messe in campo e per la rilevanza cruciale del Natural Gas nella promozione del
rispetto dell'ambiente.

1.2 FPT Testing Foggia - R&D Center

Il centro Testing FPT di Foggia ospita 6 sale prova motore ed un banco a rulli,
che rappresentano i due principali tipi di laboratorio per prove motoristiche:

� Nelle sale prova il motore è installato in una con�gurazione il più possibile
vicina a quella veicolare, ma allo stesso tempo controllato con sistemi di
attuazione tali da ottenere nei test una ripetibilità, in termini di condizioni
dell'ambiente e del motore, non facilmente garantibile altrimenti. Anche
le misurazioni e�ettuate in sala prova, direttamente su componenti spesso
prototipali e strumentati in modo altamente speci�co, sono di�cilmente
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Figura 1.2: Cursor 13 CNG di FPT Industrial.

ottenibili su un motore direttamente montato sul veicolo. La stessa stru-
mentazione adottata in sala prova, dotata di precisione e a�dabilità molto
elevate, è impossibile da installare su veicolo, per dimensioni e condizioni
di funzionamento5.

� Il banco a rulli è un particolare laboratorio in cui è testato l'intero veicolo,
grazie ad un rullo posto in rotazione dalle ruote motrici. É così possibile
l'utilizzo praticamente della stessa strumentazione adoperata in sala prova
ed è garantito un vantaggio di ripetibilità, fatta eccezione per la variabilità
nella guida del veicolo strettamente condizionata dal driver 6 incaricato del
test.

Il personale che svolge attività lavorativa in questo centro è suddiviso in due
team:

� PWT PE EE - CNG P&E BASE CALIBRATION (CNG Performance &
Emissions Base Calibration), ovvero il team application, responsabile delle
attività condotte sul motore e che dunque stabilisce e commissiona i test
da e�ettuare nelle sala prova motore, con lo scopo di sviluppare il prodotto
e validarne consumi, emissioni, prestazioni e a�dabilità.

� PWT PE - ES&P Foggia (Testing Operations & Prototype - Foggia Site),
ovvero il team facilities. Si occupa della gestione dei laboratori sia dal

5Va fatta menzione comunque di strumenti come AVL PEMS [11], utilizzato per prove su
veicolo direttamente su strada (RDE, Real Driving Emissions)

6Si tratta comunque di personale quali�cato ed esperto e le prove prevedono un numero
massimo di errori consentiti, in riferimento alla traccia pre�ssata.
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punto di vista degli impianti sia da quello degli strumenti di misura e
attuazione, della loro manutenzione, ma soprattutto è responsabile della
realizzazione delle prove commissionate dal team application e fornisce loro
strumenti d'analisi delle prove. Questo team è suddiviso in due componenti,
una dedicata alle sale prova - di cui faccio parte - e una al banco a rulli.
Inoltre a questo gruppo a�eriscono gli operai specializzati, le cui mansioni
complesse e variegate costituiscono un aspetto fondamentale della vita del
centro.

Con particolare riferimento alle sale prova, alle quali è dedicata la mia �gura,
è proposta brevemente un'introduzione alle due principali attività che mi com-
petono: la programmazione di test automatici (e più in generale la gestione
dell'automazione di sala prova) e la post-elaborazione dei dati raccolti. Per
questi compiti mi è risultata indispensabile la preparazione assunta con la laurea
triennale in Ingegneria Informatica e dell'Automazione, così come tutti gli esami
svolti in questo corso di Ingegneria Informatica Magistrale.

1.2.1 Automazione di sala prova

All'interno della sala prova, il motore è �ssato su un supporto apposito (spesso
realizzato su misura), il quale è adagiato su una base sismica. All'albero motore è
collegato per mezzo di un giunto un freno dinamometrico elettrico a correnti
parassite (noto come freno stazionario), in grado di applicare al motore in prova
una coppia resistente, o in alternativa un motore elettrico con inverter (noto
come freno dinamico), in grado di fornire una coppia motrice (trascinando il
motore) o resistente (lavorando di fatto come un freno a correnti parassite).
Queste due modalità di funzionamento del freno sono solitamente indicate con
la seguente denominazione:

� Modalità Passiva: consiste nell'applicazione esclusivamente di coppia re-
sistente ed è di solito utilizzata per impostare un dato valore limite di
velocità7, infatti si indica spesso anche come "modalità tetto di giri". In
questo modo è possibile lavorare a giri costanti, al variare del carico (e
quindi della coppia fornita dal motore in prova).

� Modalità Attiva: permette di applicare sia coppia motrice che resistente
ed è di solito utilizzata per garantire una determinata velocità, anche trasci-
nando il motore in prova quando esso non fornisce coppia. Questo avviene
durante il cut-o�, cioè il taglio d'iniezione, una circostanza molto frequen-
te durante il normale funzionamento dei propulsori quando sono montati
su veicolo. Pilotare il motore con un banco in modalità attiva permette
quindi di simulare nella maniera migliore possibile il reale comportamento

7Per velocità si intende la velocità angolare del motore in prova, misurata in rpm. É nota
quindi anche con il nome di giri.
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Figura 1.3: Freno a correnti parassite Apicom.

Figura 1.4: Sala prova dinamica (con motore AC) Apicom.
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Figura 1.5: Cella di carico Revere Transducers 9363.

su strada dei motori, caratterizzato da transitori con variazioni rapide di
velocità e coppia erogata.

La dualità di utilizzo garantita dai freni dinamici, li rende di fatto più preziosi e
adatti ad attività di test di livello avanzato.
Alla UUT (Unit Under Test) sono connessi vari sensori in grado di misurare le
principali grandezze d'interesse durante i test, ad esempio:

� La coppia erogata dal motore, mediante celle di carico o �ange torsiome-
triche, queste ultime calettate al rotore del freno dinamico;

� I giri o la velocità del motore, mediante encoder o pick-up magnetici;

� Le varie pressioni, mediante trasduttori piezoresistivi;

� Le varie temperature, mediante termocoppie (solitamente di tipo K) o
termoresistenze (solitamente PT100 in platino).

Inoltre sono installati in sala prova numerosi strumenti di misura, cioè so�-
sticati sistemi di acquisizione in grado di e�ettuare misure molto complesse con
un'elevata precisione e velocità. Sono riportati di seguito alcuni esempi.

� Il banco analisi emissioni misura in tempo reale la concentrazione degli
inquinanti nel gas di scarico del motore. Le sale prova del centro Testing
FPT di Foggia sono equipaggiate con gli AVL AMA i60, che sono dotati
di diversi analizzatori raggruppati in uno o due treni, ciascuno dei quali
analizza il gas catturato in un qualsiasi punto di prelievo sulla linea di
scarico. Gli analizzatori presenti in un banco AMA i60 sono i seguenti:
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Figura 1.6: Torsiometro HBM T40B.

Figura 1.7: Encoder Heidenhain ROD 430.

Figura 1.8: Pickup magnetico Red Lion MP-62TA.
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Figura 1.9: Trasduttore di pressione GE Sensing PTX 1000.

Figura 1.10: Termocoppia di tipo K ItalCoppie TCK.

Figura 1.11: Termoresistenza PT100 ItalCoppie PT100.
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Figura 1.12: Banco Analisi AVL AMA i60.

� NDIR, analizzatore non dispersivo a raggi infrarossi. Misura monos-
sido di carbonio (CO) e anidride carbonica (CO2).

� HFID, analizzatore a ionizzazione di �amma con rivelatore, valvole e
condotti riscaldati (a 463 K ca.). Misura idrocarburi totali (THC).

� CLD, analizzatore di tipo a chemiluminescenza con convertitore NOx
/ NO. Misura ossidi di azoto (NOx).

� FID, analizzatore a ionizzazione di �amma con dispositivo di elimina-
zione di idrocarburi non metanici (cutter). Misura metano (CH4).

� Separatamente viene misurata la concentrazione di ammoniaca (NH3), un
altro inquinante nocivo, sottoposto a limite di normativa, che si forma
a valle dei catalizzatori. Lo strumento tipicamente utilizzato per questa
misura è AVL SESAM FTIR, che basa l'analisi sulla spettroscopia agli
infrarossi.

� I sistemi di indicating permettono di condurre un'approfondita analisi
della combustione e�ettuata dal motore, ciclo per ciclo. Nel nostro centro è
utilizzato il sistemaAVL IndiCom, che misura e calcola tutte le grandezze
d'interesse con una velocità elevatissima. Le varie generazioni di questo
sistema prevedono hardware di diverso tipo (Indimodul 622 o X-ion).
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Figura 1.13: Banco Analisi AVL SESAM FTIR.

Figura 1.14: HW per acquisizone Indicating AVL Indimodul 622.

Figura 1.15: HW per acquisizone Indicating AVL X-ion.
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Alla UUT è collegato inoltre il sistema after-treatment e sono naturalmente pre-
senti anche gli scambiatori e gli impianti di ra�reddamento, la tubazione che
approvvigiona il combustibile (gas di rete proveniente dalla linea o gas certi�ca-
to stoccato in apposite bombole) e tutti i sistemi di sicurezza in caso di incendi
o esplosioni, che non si possono escludere in un contesto di ricerca su motori a
gas naturale compresso.
In�ne è collegata al cablaggio motore una "centralina" o, più propriamente, una
ECU (Engine Control Unit) adatta allo sviluppo: di�erentemente dalle ECU di
produzione, questi dispositivi prevedono una particolare interfaccia che permette
di accedere e modi�care in modalità real-time parametri e mappe della ECU. Per
gestire questa interfaccia è utilizzato un software apposito, tipicamente è adope-
rato ETAS INCA [5].
Per coordinare un banco prova così strutturato è necessario un potente sistema
di automazione, che faccia da collettore di tutta la strumentazione di misura e
che sia in grado di manovrare programmaticamente il motore e l'intera sala pro-
va. Si tratta di sistemi suddivisi generalmente in una componente di più basso
livello (dotata di HW dedicato, tipicamente installata su SO di tipo Real Time)
e in una componente di alto livello (installata su un classico SO Windows). La
prima garantisce brevissimi tempi di input e output (talvolta nell'ordine di 1
ms), mentre la seconda gestisce l'interfaccia utente. Nel centro di Foggia sono
adoperati due prodotti di questo genere:

� EURINS AdaMo8, basato su tecnologia HW e SW National Instrumen-
ts9, è adoperato in 4 sale prova. La sua architettura, interamente realizzata
in linguaggio LabVIEW [4], si basa su un'applicazione Windows connessa
ad un CompactRIO10 ed è sviluppata su 3 livelli:

� un dispositivo FPGA, integrato nel cRIO, che gestisce input e output
a basso livello;

� un software Real Time installato sul SO LinuxRT [15] del cRIO,
che rappresenta il vero nucleo di AdaMo: gestisce tutte le schede NI
(9264, 9205, 9219) a bordo del cRIO;

� un clientWindows installato su un classico PC Desktop, che costitui-
sce l'interfaccia utente e - attualmente - l'ambiente di programmazione
per task e prove automatiche.

I prodotti National Instruments sono un riferimento nel merito della misura
e del controllo, ma un'ulteriore e ancor più importante qualità del sistema
AdaMo è la modularità hardware e software, che lo rende uno strumen-
to molto valido per attività di ricerca, non solo in ambito automotive.

8www.eurins.com
9www.ni.com
10www.ni.com/it-it/shop/compactrio.html.

12

www.eurins.com
www.ni.com
www.ni.com/it-it/shop/compactrio.html


Permette infatti un alto grado di personalizzazione dell'applicazione per il
cliente, grazie all'integrazione di altri software (senza vincoli sul linguaggio
utilizzato) e grazie anche alla possibilità di utilizzare qualsiasi scheda NI
compatibile con il cRIO.

� AVL PUMA Open [1], presente in 2 sale prova nella versione 1.5.1, è
considerato lo standard mondiale per i banchi prova motore ed è molto
facilmente integrabile con tutta la strumentazione prodotta dalla stessa
AVL, la più largamente utilizzata in questo campo. Sono citati di seguito
alcuni esempi di strumenti prodotti da AVL, utilizzati nel centro Testing
FPT di Foggia:

� AVL IndiCom per il controllo combustione

� AVL AMA i60, AMA i60 LDD e AVL SESAM FTIR per l'analisi
emissioni

� AVL 489 APC e AVL 478/472 SPC per misurare rispettivamente il
numero di particelle emesse (Particulate Number, PN) e il loro peso
(Particulate Matter, PM)

PUMA Open è una suite software che o�re una serie di strumenti per la
parametrizzazione, il monitoraggio e il controllo dei banchi prova motore.
É dotato di un'interfaccia per gli operatori che prende il nome di PUMA
Operator Interface (POI) che mette a disposizone tutte le funzionalità del
sistema d'automazione, in base all'implementazione e�ettuata da parte del-
l'automation engineer. Il sistema operativo real time di PUMA prende il
nome di INtime e si occupa della gestione a basso livello del banco prova
e anche del coordinamento di alcune categorie di strumenti, tra cui i ban-
chi analisi. In�ne un banco PUMA può essere dotato della piattaforma di
certi�cazione (AVL iGEM [8]), che costituisce il principale riferimento per
l'esecuzione e la post-elaborazione delle prove di certi�cazione dei motori.

Questi sistemi permettono dunque, in tempo reale, di pilotare il motore e analiz-
zarne la risposta nei termini delle grandezze misurate, che possono essere mostra-
te a video o scritte su un �le di salvataggio. Il controllo del motore è e�ettuato
dal banco per mezzo dei seguenti output:

� Set di giri trasmesso al freno (modalità passiva) o al motore elettrico
(modalità passiva o attiva).

� Set di pedale (alpha), trasmesso alla ECU come segnale analogico in tensio-
ne. Consiste nel nostro caso in una richiesta di coppia al motore, espressa
come percentuale di pedale in base alla coppia massima raggiungibile dal
motore alla velocità attuale.
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� Set mappe o parametri della ECU, attraverso un protocollo di comunica-
zione (tipicamente ASAP3 [7]) tra il software di automazione e il software
di gestione ECU. É quest'ultimo a trasmettere in�ne il set alla ECU.

Il set di giri e alpha (o coppia) può essere e�ettuato in modo stazionario, mante-
nendo cioè il motore stabile nel punto operativo richiesto, oppure possono essere
e�ettuati dei transitori (gradini o rampe). Il software di banco permette inoltre
di coordinare valvole, regolatori e altri dispositivi di condizionamento dell'am-
biente all'interno della sala prova.
Un altro compito fondamentale del sistema di automazione consiste nell'integra-
zione dei vari strumenti di misura adoperati, ciascuno dei quali espone metodi
di controllo e dati misurati attraverso uno speci�co protocollo (tipicamente AK
Protocol [13]). Attraverso l'implementazione di opportuni driver è possibile tra-
smettere agli strumenti comandi (misura, standby, reset, pulizia, etc.) e ricevere
i valori misurati con una frequenza dipendente dallo strumento). Ciascuna di
queste operazioni può essere e�ettuata tramite meccanismi manuali o alternati-
vamente per mezzo dell'interfaccia utente del software, che l'automation engineer
realizza in base alle proprie necessità. Le tecniche di salvataggio in�ne prevedono
l'utilizzo di �le di testo o record di database strutturati (solitamente ASAM ODS
[3][9]).
É possibile considerare dunque il SW d'automazione come un ampio ambiente
di programmazione, in cui le variabili (tipicamente è adoperata una tipizzazione
forte) sono note come canali e possono avere diversa natura:

� input attribuibili al valore attuale di una grandezza �sica (ottenuto da un
sensore o da uno strumento di misura) o immessi dall'operatore durante
l'utilizzo del banco

� costanti pre�ssate e de�nite staticamente

� formule implementabili con metodi di calcolo avanzati, per ottenere gran-
dezze non direttamente misurabili

� output associati ad uscite �siche del sistema o variabili utilizzate come
contatori, bu�er, etc.

Inoltre possono essere con�gurati ed eseguiti task (controllo del motore, gestione
strumenti, set di output, scrittura su �le), automi a stati �niti, allarmi e relative
reazioni. AVL PUMA permette inoltre l'esecuzione di VBScript per realizzare
strumenti software più complessi e strutturati.
L'impiego di questi sistemi tuttavia non si limita ad un utilizzo "manuale" del
banco, che richiede la presenza di personale quali�cato, ma permette l'imple-
mentazione di test automatici che il SW esegue appunto in autonomia. La
programmazione di queste prove è realizzata secondo le tecniche ed i linguaggi
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(ad esempio VB11) che i diversi sistemi d'automazione mettono a disposizione,
tuttavia la disciplina e gli algoritmi da adoperare sono a totale discrezione del-
l'utilizzatore: è infatti cruciale riuscire a programmare test in grado di restituire
lo stesso risultato per formato e contenuto, a prescindere dal software di auto-
mazione utilizzato.
Le prove automatiche permettono inoltre di e�ettuare sul motore operazioni de-
terministicamente ripetibili, in maniera reiterata. Questo risulta fondamentale
per attività di durata, che consistono nel replicare per un gran numero di volte
lo stesso pro�lo di giri e coppia (o alpha) con lo scopo di validare l'a�dabilità
del prodotto o di determinate sue componenti. Tuttavia nel nostro centro sono
svolte più frequentemente prove di sviluppo, spesso �nalizzate a raggiungere la
calibrazione (ovvero la con�gurazione dei parametri della ECU) che permetta di
ottenere speci�ci risultati preposti, tipicamente in termini di emissioni, consumi
o prestazioni. Se da un lato le prove manuali costituiscono sempre il punto di
partenza per qualsiasi sperimentazione motoristica di questo genere, dall'altro
lato i test automatici possono garantire, per prove di sviluppo riconducibili a
precisi algoritmi, ripetibilità e velocità d'attuazione impossibili da ottenere ma-
nualmente. Inoltre garantiscono lo svolgimento di complesse attività di ricerca,
anche quando il personale quali�cato per svolgerle ha terminato l'orario lavora-
tivo.
Lo scopo delle sperimentazioni condotte consiste quasi esclusivamente nel man-
tenere le emissioni dei nostri motori al di sotto dei limiti di normativa. Per
validare la maturità di un motore e della relativa calibrazione, sono spesso ef-
fettuati cicli omologativi12 anche durante le attività di sviluppo. Si tratta di
particolari prove automatiche implementate ed eseguite secondo le prescrizioni
delle normative vigenti e sono e�ettuate durante le omologazioni in presenza di
personale della Motorizzazione Civile, che certi�ca la conformità del motore in
base appunto all'esito di queste prove. In�ne sta assumendo sempre più impor-
tanza la simulazione al banco di pro�li provenienti da acquisizioni su veicolo,
che danno un riscontro pratico del quantitativo di inquinanti emessi durante il
percorrimento di un normale tratto stradale. L'implementazione e l'esecuzione
di queste particolari prove richiede dunque un approccio meticoloso nell'osserva-
zione delle speci�che di normativa.
Generalmente la realizzazione delle prove si snoda nelle seguenti fasi:

1. Progettazione: in cooperazione con gli application engineer sono analiz-
zati gli obiettivi dell'attività e le speci�che necessarie, in termini di carat-
teristiche del banco e disponibilità di eventuali strumenti di misura non
standard (in condivisione tra le sale prova). A tale scopo si consultano le
Norme (interne FPT o normative di legge) che dettano le linee guida per
lo svolgimento delle prove.

11docs.microsoft.com/it-it/dotnet/visual-basic/
12I principali test omologativi per motori On-road sonoWHTC (World Harmonized Transient

Cycle) e WHSC (World Harmonized Stationary Cycle), descritti dalla normativa ECE-R49 [10].
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2. Gestione degli strumenti: come già accennato, ciascuno strumento di
misura è dotato di una propria interfaccia che permette al SW di banco di
acquisire le grandezze misurate e in molti casi consente anche il controllo
remoto del device; va curata quindi la con�gurazione di questi protocol-
li e la creazione di librerie per la gestione degli strumenti nell'ambiente
d'automazione.

3. Implementazione: gli algoritmi di test possono essere realizzati come veri
e propri programmi, strutturati in sotto-procedure (o subroutines) rese il
più possibile parametrizzabili dinamicamente e quindi riutilizzabili in altre
sequenze di prova. Questo approccio permette di organizzare le procedure
in librerie, dalle quali attingere durante l'implementazione di una nuova
prova. I diversi step delle sotto-procedure possono consistere in azioni
di controllo del motore (statiche o dinamiche), nell'invio di comandi agli
strumenti connessi, nell'esecuzione di salvataggi (avvio o interruzione di
recorder e la scrittura di misurazioni mediate), etc. Non meno importante
è la messa a punto dell'interfaccia gra�ca per gli operatori che dovranno
eseguire la prova ed eventualmente immettere alcuni input preliminari.

4. Test: prima di deliberare che la prova richiesta sia pronta per essere ese-
guita, è opportuno veri�care il funzionamento - ed eventualmente e�ettuare
un "debug" - del test implementato, simulandone lo svolgimento a motore
spento. Si tratta di un'operazione fondamentale per non causare danni su
motori e componenti prototipali.

1.2.2 Post-Elaborazione dei dati

La quantità e la complessità dei dati acquisiti durante le prove richiedono un'im-
portante attività di analisi successiva, da condurre per mezzo di strumenti ade-
guati a tale scopo. E�ettuare valutazioni sui risultati dei test comporta infatti
una conoscenza profonda delle normative, del funzionamento dei nostri motori e
di tutti i fenomeni �sici e chimici associati alla combustione e allo scarico. D'al-
tro canto è contestualmente necessario maneggiare una grande mole di dati, dai
quali non è sempre immediato ottenere le informazioni desiderate: per questo
motivo è necessario associare alle competenze tecniche del settore, proprie del
team application, competenze nell'ambito della programmazione o�erte dall'au-
tomation engineer del team facilities.
Piattaforme tipiche per e�ettuare quest'attività di post-elaborazione possono
essere individuate nei classici fogli di lavoro Microsoft Excel13, anche grazie alle
Macro VBA14 implementabili, o nell'IDE di Mathworks MATLAB15. Il software

13docs.microsoft.com/en-us/office/client-developer/excel/excel-home
14docs.microsoft.com/it-it/office/vba/api/overview/excel
15urlwww.mathworks.com/products/matlab.html
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Figura 1.16: Struttura di un File dati in Concerto.
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di maggior impiego nella nostra azienda per questo genere di lavoro è tuttavia
AVL Concerto16, largamente utilizzato nel settore automotive, per il quale è
stato essenzialmente ideato. Permette di connettersi a database remoti, impor-
tare ed esportare dati gestendo numerosi formati diversi, realizzare e manipolare
molto facilmente gra�ci di diverse tipologie, e�ettuare calcoli molto articolati o
impossibili da ottenere "online" sul software di automazione di sala prova (ad
esempio il calcolo del lavoro durante un ciclo WHTC, espresso come l'integrale
della potenza positiva durante il test). Un insieme di gra�ci - o �nestre di altro
tipo - prende il nome di layout, vale a dire una "maschera" che rappresenta
in maniera esplicita le informazioni estratte dai dati contenuti nei test result ;
un esempio tipico può essere rappresentato dal layout applicato ai dati raccolti
da un ciclo omologativo, che costituisce il vero e proprio report della prova di
certi�cazione.
La grande potenzialità di questa piattaforma è però nell'ambiente di program-
mazione che mette a disposizione, per realizzare formule più complesse o script
che manipolano dinamicamente il layout. In tal senso tecniche e metodologie di
programmazione più strutturate permettono la realizzazione di layout adatti a
e�ettuare elaborazioni molto complesse in maniera immediata. Per fare questo,
è fondamentale che la struttura e il contenuto del test result sia noto a priori
e dunque a monte devono essere acquisiti durante il test in sala prova tutti i
dati necessari, nei tempi e modi opportuni. Ciò è facilitato dal fatto che sia lo
stesso automation engineer a occuparsi del post-processing, di conseguenza i test
automatici e i task d'automazione sono implementati in modo coerente con la
struttura di elaborazione realizzata su Concerto (e viceversa).
Una volta importati i dati dai test, Concerto lavora su una struttura �ssa, avul-
sa dal formato di provenienza, che permette in ambiente di programmazione di
accedere ai canali registrati. Tale organizzazione può essere così schematizzata
(Fig. 1.16):

1. File: una volta aperto un test result, ad esso è associato un Alias tramite
il quale è possibile esplicitare un riferimento. É possibile de�nire diver-
si Datasource, che assegnano uno speci�co formato ad una determinata
locazione in DB e �lesystem locali o remoti, con il vantaggio di poter asse-
gnare a tali �le formule già implementate, regole di traduzione per i nomi
dei canali e altri meccanismi di precon�gurazione automatica.

2. Chiavi: ogni �le è suddiviso in chiavi, che rappresentano determinate fasi
o porzioni dell'acquisizione fatta in sala prova. Possono essere ricondotte
a due tipologie:

(a) Time Based, anche note come recorder, che consistono in acquisi-
zioni e�ettuate in sala prova in modo "continuo", cioè con la scrit-

16urlwww.avl.com/web/guest/-/avl-concerto-5-
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tura appunto continua dei valori attuali dei canali con una frequenza
impostata.

(b) LogPoint Based, anche note come measurement, che rappresenta-
no acquisizioni "puntuali", cioè di un singolo valore dei canali molto
spesso ottenuto da una media in un dato intervallo di tempo.

3. Canali: in�ne nelle chiavi sono contenuti diversi canali, cui è associato un
tipo di dato e un'unità di misura, esattamente come con�gurato in sala
prova prima dell'acquisizione.

Il linguaggio previsto per la programmazione su Concerto, molto simile a VB, è
proprietario AVL17 e presenta molte classi adatte alla gestione dei dati importati.
Nelle versioni più recenti18 inoltre è stato integrato un supporto per script e
formule Python19, che apre al vasto mondo della community di utilizzatori di
questo linguaggio e permette di fruire dei vantaggi dettati dalla sua versatilità e
riusabilità. L'integrazione dei due linguaggi, associata ad una gestione avanzata
dell'automazione di banco, costituisce la chiave per realizzare architetture molto
potenti che coinvolgono ogni aspetto della sperimentazione motoristica.

17É utilizzato anche su AVL PUMA (sistema d'automazione, vedi paragrafo precedente) per
l'implementazione delle formule.

18Per questo progetto è impiegato Concerto 5 R3.1 [2].
19urlhttps://docs.python.org/3/
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Capitolo 2

Descrizione del progetto

Il contesto di ricerca descritto a grandi linee nel capitolo precedente, lascia inten-
dere l'importanza cruciale che riveste l'a�dabilità di tutti gli strumenti adoperati
e delle metodologie adottate in ogni fase delle attività condotte sui motori. Dai
dati ottenuti dalle prove dipende non solo l'evoluzione del prodotto, ma soprat-
tutto la sua idoneità alla produzione e alla vendita: è necessario che su tali dati
si abbia la maggiore con�denza possibile, perché siano attendibili e difendibili.
Uno degli aspetti chiave del nostro lavoro consiste proprio nella validazione dei
risultati, sia nel caso in cui siano misure dirette, sia nel caso in cui siano prodot-
to di calcoli. Oltre a basare naturalmente su un metodo documentato il processo
che porta all'ottenimento di questi dati, è necessario dunque corroborare il pro-
cesso con una fase di veri�ca, che scovi eventuali errori di�cili da rilevare. Si
tratta di un'attività di controllo fondamentale non solo per l'importanza dei dati
in questione (per esempio consumi ed emissioni dichiarate) ma soprattutto per
individuare eventuali vulnerabilità nei metodi adoperati permettendo così di far
evolvere qualitativamente l'attività di ricerca.
Per corredare il concetto appena esposto di un semplice esempio, è utile fare
menzione dei risultati dei test omologativi in termini di emissioni, per compren-
dere la complessità del procedimento di misura e calcolo. Per ciascun inquinante
sottoposto a limiti dalla normativa vigente, è presente nel report u�ciale un
valore normalizzato al lavoro e�ettuato dal motore durante il test (riportato in
g/kWh). Tale grandezza risultante dipende dunque da:

� Il lavoro, in kWh, calcolato come integrale della potenza (kW) durante
il ciclo, a sua volta calcolata a partire dalle misure istante per istante di
velocità (rpm) e coppia (Nm);

� Il quantitativo di inquinante emesso, in g, calcolato a partire dalle misure
istante per istante di concentrazione dell'inquinante (ppm o Vol%), por-
tata allo scarico (kg/h), umidità e temperatura dell'aria, oltre che dalla
composizione chimica del carburante.
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Si evince dunque quanto articolato sia il procedimento per il calcolo dei dati di
output delle prove, ma soprattutto quanto numerosi siano i nodi critici, poten-
zialmente vulnerabili rispetto a eventuali errori o malfunzionamenti strumentali.
Avere a disposizione un ulteriore strumento di validazione permetterebbe co-
sì di basare le analisi motoristiche su dati consolidati e più a�dabili e quindi
focalizzare ulteriormente l'attenzione sullo sviluppo del prodotto.

2.1 Obiettivi

L'idea alla base di questo progetto nasce dalla volontà di validare i risultati di
una prova proponendo un approccio ai dati raccolti in quanto tali. Molto spes-
so le acquisizioni fatte in sala prova celano informazioni di ardua accessibilità,
poiché disperse in un quantitativo molto elevato di dati. Nell'ottica di snellire
il lavoro di interpretazione o e�ettuare un'operazione di data mining, può es-
sere utile utilizzare algoritmi di machine learning. É stato applicato questo
concetto alla necessità di un controllo di plausibilità delle prove: l'obiettivo di
questo progetto è l'implementazione di uno strumento di validazione dei risultati
ottenuti da test e�ettuati al banco, sulla base dei dati relativi a test simili e�et-
tuati precedentemente. Nel caso in cui il processo di test, misura ed elaborazione
sia stato a�etto da errori, l'esito di tale controllo potrebbe rivelare un'anomalia
statistica, qualora il risultato ottenuto sia troppo distante dalla proiezione otte-
nuta a partire dai dati pregressi. Questo strumento prende il nome di AITV:
Arti�cial Intelligence Test Validator.
Uno dei requisiti fondamentali, su cui si basa il sistema che si vuole realizzare,
è la sistematica raccolta in un Database unico delle informazioni relative alle
prove eseguite. Ciascuna entry del DB deve riportare tanto i parametri generali
di input del test, che possano caratterizzare e condizionare la prova, quanto cia-
scuno dei relativi risultati. Questo implica un coinvolgimento in questo sistema
dell'intera piattaforma di test, dall'automazione al post-processing, passando per
le aree di archiviazione.
Il controllo di plausibilità è e�ettuato, come sopra accennato, attraverso un mo-
dello predittivo implementato tramite tecniche di intelligenza arti�ciale, più
nello speci�co di machine learning. Tale modello è allenato su un training
set costituito dalle prove presenti nel DB ed è utilizzato per predire il risultato
selezionato, dati gli input della prova in esame. Il valore così ottenuto può essere
confrontato con il dato estratto realmente dal test.
Lo strumento proposto è stato concepito per o�rire un supporto agli ingegneri
responsabili delle valutazioni sulle attività condotte, con uno spettro di applica-
zioni potenzialmente molto ampio. Naturalmente i dati più sensibili sono quelli
prodotti dai test omologativi e su questi è molto importante e�ettuare il maggior
numero possibile di controlli di plausibilità, in fase di sviluppo del prodotto. Allo
stesso modo tuttavia è conveniente accertare i risultati di qualsiasi altra prova
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di sviluppo o durata, i quali, una volta condivisi con i restanti centri R&D FPT
sparsi nel mondo, condizionano il successivo percorso di evoluzione del prodotto.

2.2 Architettura del sistema

Lo strumento introdotto nel paragrafo precedente, che prende il nome di AITV
(Arti�cial Intelligence Test Validator), coinvolge diversi ambienti che compon-
gono il test�eld e di conseguenza ciascuno di essi entra a far parte dell'architet-
tura del sistema realizzato. É stato infatti necessario tanto agire su strutture
d'automazione e test automatici in PUMA e AdaMo, quanto implementare la
piattaforma di elaborazione su Concerto. Inoltre sono stati de�niti un formato
comune e un'area di storage centralizzata per i dati provenienti dai due diversi
sistemi di automazione, il che ha comportato un lavoro di adattamento signi�-
cativo.
In Fig. 2.1 è schematizzata l'architettura generale del sistema realizzato, che ne
sintetizza l'intero processo di funzionamento ed evidenzia tutti gli ambiti interes-
sati dal lavoro di implementazione compiuto in questo progetto. La descrizione
che segue è organizzata proprio secondo la procedura della sperimentazione, dal-
la teorizzazione del test in sala prova, alla post-elaborazione e validazione del
risultato.

2.2.1 De�nizione delle prove

Come illustrato nel capitolo precedente, le diverse attività sperimentali condotte
sui nostri motori comportano la progettazione di numerosi test che la sala prova è
in grado di eseguire autonomamente, a seguito di un'opportuna implementazione.
La gestione di sale prova di natura diversa (PUMA e AdaMo) impone tuttavia
una de�nizione dell'algoritmo avulsa da ciascuna piattaforma software su cui
sarà realizzato: per questa ragione risulta particolarmente utile una trascrizione
in pseudocodice della procedura di prova automatica. É stato possibile in questo
modo strutturare un database di prove (Fig. 2.2) disponibili, grazie al quale
diventa più semplice il lavoro di consultazione ed eventuale aggiornamento dei
cicli.
In questo contesto è semplice individuare, per ogni test già implementato in pas-
sato, in quale punto dell'algoritmo inserire il codice necessario per adeguare le
strutture preesistenti al sistema realizzato in questo progetto: è infatti necessario
che le de�nizioni dei test presentino uno step nel quale sono raccolti e salvati gli
speci�ci dati preliminari della prova, che costituiranno i potenziali input
della previsione e�ettuata in fase di validazione (ultimo blocco dell'architettura
proposta in Fig. 2.1). In particolare i valori di queste variabili saranno memoriz-
zati all'interno di una chiave prede�nita del test result, a cui è stato assegnato il
nome V_IN.
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Figura 2.1: Architettura del sistema.
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Figura 2.2: Database degli algoritmi di test.

2.2.2 Implementazione del test

Le procedure di test teorizzate ed espresse in pseudocodice sono implementate
dall'automation engineer nei due sistemi d'automazione (Fig. 2.3), secondo le
diverse tecniche e linguaggi di programmazione. Una corretta gestione di cia-
scuna sala prova, dal punto di vista dell'attuazione meccanica sul motore e delle
misurazioni con sensori e strumenti, può garantire una solida base per ottenere
test confrontabili anche se e�ettuati su banchi diversi. Per giungere a questo
obiettivo è tuttavia necessario che anche la programmazione dei test sia realiz-
zata in maniera corretta e coerente, il che richiede una profonda consapevolezza
delle caratteristiche dei due sistemi d'automazione utilizzati nel centro di Foggia.
Il test result della prova e�ettuata su un banco deve dunque presentarsi in mo-
do analogo e quasi indistinguibile rispetto a quello ottenuto da un altro banco,
anche nel caso in cui adoperi un sistema di�erente.
Il formato adottato da AVL per l'immagazzinamento dei dati raccolti da PUMA
durante un test è ASAM ODS (Open Data Services) [3] [9]: ciascun test result
costituisce un record di un database opportunamente strutturato ed è organiz-
zato secondo la suddivisione illustrata nel capitolo precedente, in chiavi e canali
stabiliti dall'utente. D'altro canto sulla piattaforma AdaMo è possibile produrre
diversi �le di testo (ASCII) durante l'esecuzione di una prova. Da qui nasce l'i-
dea di uni�care il formato del test result per entrambi i sistemi di automazione,
adoperando sui �le di testo prodotti da AdaMo un passaggio di traduzione per
mezzo del FileConverter, un componente software opportunamente realizzato
in linguaggio Concerto/Python. Data una particolare prova, la sua implementa-
zione su PUMA, detta TST, prevederà il salvataggio in momenti opportuni delle
diverse chiavi recorder o measurement ; l'analogo programma di test realizzato
su AdaMo, detto prv, produrrà tanti �le di testo quante sono le chiavi richieste
dalla prova. La folder contenente tutti i �le generati da AdaMo sarà in�ne data
in input al FileConverter, il quale produrrà un �le ATF (ASAM Transport
Format) strutturato esattamente come il record ASAM ODS restituito dal TST
di PUMA.
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Figura 2.3: Automazione di sala prova.

2.2.3 Archiviazione dei risultati

Diverse sono le soluzioni per archiviare i test result prodotti dai sistemi d'au-
tomazione. Naturalmente l'utilizzo di un database centralizzato è considerata
quasi sempre la soluzione migliore. Le sale prova AVL tendenzialmente permet-
tono uno storage centralizzato - per mezzo di un database AVL Santorin ASAM
ODS 1 - per tutti i banchi PUMA che compongono lo stesso test�eld e di conse-
guenza un solo database raccoglie tutti i test result provenienti da ciascuna sala
prova PUMA, oltre che ogni �le di parametrizzazione, inclusi i TST. Almeno
attualmente, questo non è il caso delle nostre due sale AVL, che sono dotate cia-
scuna del proprio server ASAM ODS locale. Allo stesso modo ogni sala AdaMo
prevede un'area di archiviazione dei �le di risultati nel �lesystem locale. Tutta-
via tutti i PC Windows di sala prova, che ospitano la parte di interfaccia utente
dei sistemi d'automazione, hanno una scheda di rete riservata e adoperata per
la connessione alla rete LAN aziendale, alla quale accedono anche tutti i laptop
degli ingegneri.
Una delle funzionalità più utili di Concerto, come accennato nel capitolo 2, è la
possibilità di de�nire dei Datasource, cioè dei data provider che associano a
unità di archiviazione remote un determinato formato di �le e altre preferenze di
con�gurazione. Per questo progetto è stata adoperata una semplice organizza-
zione dei dati: ciascuna delle sei sale prova dispone della propria area di storage
- in alcuni casi direttamente sul PC di sala prova e in altri casi su una risor-
sa di archiviazione condivisa - ma ciascuna mette in condivisione tale struttura
attraverso un Datasource; di conseguenza è stato su�ciente creare su Concerto
un Datasource per ogni banco, garantendo così l'accesso a tutti i test result
(�g. 2.4). Naturalmente nel caso delle sale PUMA, il Datasource è con�gurato
in modo tale da accedere direttamente al server ASAM ODS, mentre per le sale
AdaMo è stato associato ad un determinato path nel �lesystem di una risorsa di
archiviazione condivisa nella rete aziendale, in cui sono caricati i �le in formato
ASAM ATF. Lo step di traduzione della folder di risultati di AdaMo, contenente i

1www.avl.com/testing-solutions-for-batteries/-/asset_publisher/

gYjUpY19vEA8/content/avl-santorin-asam-ods-server.
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Figura 2.4: Archiviazione dei �le di risultati dei test.

diversi �le di testo raccolti, è performato preliminarmente alla post-elaborazione
della singola prova, per mezzo dell'esecuzione del Job Concerto2 relativo al
FileConverter precedentemente menzionato, che genera un ATF �le accessibile
attraverso il Datasource.
In de�nitiva, una volta che la prova è stata eseguita su un sistema PUMA, i
risultati sono archiviati localmente ma disponibli attraverso il corrispondente
Datasource per essere post-processati con appositi layout. Diversamente, nel ca-
so di AdaMo è necessario eseguire la conversione con il FileConverter, perché il
test result sia disponibile per il post-processing in un formato adeguato allo stan-
dard AVL. Il risultato è un unico Database centralizzato per tutte le sale prova,
che �sicamente è dislocato in tre diverse aree d'archiviazione, ma logicamente
rende accessibili i dati di ciascun banco attraverso un solo strumento e una sola
tecnica.

2.2.4 Post-Elaborazione dei dati raccolti

I dati raccolti dai banchi, resi disponibili in Concerto dal Database centralizzato
appena descritto, sono in�ne elaborati con layout e formule speci�ci per ogni tipo-
logia di test. Questo processo permette di determinare i risultati �nali, anch'essi
strettamente correlati alla prova di riferimento: risultati �nali di un test omolo-
gativo WHTC sono ad esempio i valori di inquinanti emessi (UoM mg/kWh), il
lavoro compiuto dal motore (UoM kWh) e così via. Le formule da implementa-
re, la disposizione delle �nestre nel layout e la struttura del report generato da
Concerto sono tutti dettagli de�niti in fase di preparazione dell'attività di test.
É bene osservare quanto sia importante che i dati salvati dall'automazione siano
completi e consistenti: la messa a punto di maschere di elaborazione e�caci va
molto spesso di pari passo con l'implementazione del test al banco.
Uno degli elementi fondamentali su cui si basa questo progetto è il già denso ar-

2Il Job è un particolare task eseguibile nell'ambiente di Concerto, implementato e
con�gurato dall'utente. Questo concetto sarà approfondito nel prossimo capitolo.
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chivio dei layout di post-elaborazione utilizzati in diversi dei nostri centri R&D,
per attività di ogni genere. Ad esso se ne aggiungono continuamente di nuovi,
naturalmente in concomitanza con l'implementazione dei relativi test nell'auto-
mazione. Ciascuno di questi layout, una volta eseguito, produce una serie di
risultati del test e�ettuato, che potranno essere oggetto di validazione mediante
AITV, come sarà descritto nel prossimo paragrafo. Qualora tali dati siano ri-
tenuti a�dabili, potranno essere aggiunti all'insieme dei risultati associati
alla tipologia di prova elaborata, che costituisce il training set con cui è ad-
destrato il modello di validazione. Per fare questo, è eseguito un Job di Concerto
che prende il nome di Parser, implementato in linguaggio Concerto/Python, in-
vocabile dopo l'esecuzione del layout. Questo componente software ha il duplice
scopo di fare un parsing sul �le di risultati per ottenere tutti i dati prelimina-
ri del test immagazzinati nella chiave V_IN e di raccogliere i relativi risultati
speci�ci del test elaborato. Queste informazioni sono trascritte su un �le di testo
associato alla speci�ca tipologia di prova, considerato il vero e proprio training
set: esso contiene una serie di campioni corrispondenti a tutti i test eseguiti che
a�eriscono alla stessa tipologia, per i quali sono riportati input e output e su cui
e�ettuerà l'apprendimento il modello di validazione basato su machine learning.
Facilmente si evince dunque che è previsto un �le di training set per ciascun
tipo di prova, ognuno dei quali è popolato opportunamente dal Parser nel
momento in cui è eseguito per raccogliere i dati ottenuti da nuovi test. Esso è
dotato della necessaria �essibilità grazie alla quale discrimina il tipo di prova per
cui è stato eseguito e di conseguenza seleziona quanti e quali risultati raccogliere
dall'elaborazione popolando il corrispondente training set.
Si possono così riassumere i passaggi descritti �nora: la prova è teorizzata, imple-
mentata e in�ne eseguita sul sistema d'automazione e i dati raccolti sono condivisi
dalle sale attraverso i Datasource, con cui è possibile importare in Concerto il
test ed elaborarlo con l'opportuno layout. A questo punto è possibile validare i
risultati mediante l'esecuzione di AITV (come vedremo nel prossimo paragrafo) o
aggiungerli - insieme ai parametri di input - al training set mediante l'esecuzione
del Parser, che aggiorna la struttura su cui si basa il modello di validazione. Per
questo motivo post-elaborazione e validazione costituiscono due elemen-
ti dell'architettura paralleli e connessi, che sono dunque posizionati sullo
stesso livello. L'utente gode della libertà di scegliere se e quale Job eseguire dopo
aver caricato il �le di risultati e applicato su di esso il layout, tuttavia la logica
di utilizzo di questi strumenti prevede che i risultati siano naturalmente validati
prima di utilizzarli per aggiornare il training set. Questa sequenzialità delle due
operazioni è tuttavia a�data all'utente, che in sintesi dovrebbe teoricamente:

1. identi�care il �le di risultati del test eseguito in sala prova;

2. eventualmente convertirlo con il FileConverter qualora provenga da una
sala prova AdaMo;

3. caricarlo in Concerto e applicare il layout di post-elaborazione opportuno;
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Figura 2.5: Post-elaborazione dei dati.

4. validare i risultati con AITV;

5. usare il Parser per aggiungere al training set associato alla tipologia di
prova nuove entry contenenti i parametri di input della chiave V_IN e i
relativi risultati calcolati dalla maschera di post-elaborazione.

Avere caricato in Concerto il �le di risultati e applicato su di esso il layout
costituisce dunque l'unico requisito per l'esecuzione tanto di AITV quanto del
Parser e, a seconda dello step che si sta e�ettuando, è possibile eseguire l'uno o
l'altro.

2.2.5 Validazione dei risultati

L'elemento che completa l'architettura è AITV, cioè il validatore dei risultati
realizzato in linguaggio Python e sviluppato per l'ambiente di Concerto, di cui
sono sfruttate le potenzialità già analizzate nel primo capitolo, in particolare per
accedere ai dati e presentare gra�camente il risultato della validazione.
Il ritmo da sostenere in un centro Testing FPT è molto sostenuto, le attività
seguono piani�cazioni ben scandite ed è cruciale che la post-elaborazione estrag-
ga dai dati raccolti un'interpretazione il più possibile rapida, univoca, chiara e
a�dabile. Per validare i risultati ottenuti sono generalmente adoperate me-
todologie di analisi basate su studi approfonditi dei fenomeni �sici e chimici
che regolano emissioni, consumi e prestazioni dei motori. Nei modi proposti da
questo progetto, il supporto dell'Intelligenza Arti�ciale e dunque del Machine
Learning non è mirato assolutamente a sostituire le metodologie di validazio-
ne preesistenti, ma vuole anzi costituire un ulteriore strumento di analisi degli
esiti delle prove, anche sul piano qualitativo. Il sistema è in grado di mostrare
l'evidenza di un risultato "fuori statistica" secondo una predizione basata sui
parametri selezionati dall'utente: si tratta quindi di un'analisi dipendente dagli
input scelti e di conseguenza può essere valutata anche la stessa correlazione tra
la quantità predetta (il risultato) e quelle di input (i parametri preliminari del
test).
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Figura 2.6: AITV: Validatore dei risultati con Intelligenza Arti�ciale.

Il validatore AITV (�g. 2.5) può essere eseguito - analogamente al Parser e al
FileConverter - come un Job Concerto, appena dopo aver e�ettuato l'elabora-
zione del test con il relativo layout. Anche in questo caso si sfrutta il fatto che
il test result d'interesse sia già caricato e aperto3 e dunque, a seconda del tipo
di prova, il validatore raccoglie i risultati appena calcolati e li sottopone all'u-
tente perché ne selezioni uno. Determinato il risultato da validare, cioè l'output
della predizione, l'utente può ora scegliere una o due variabili di input tra i pa-
rametri preliminari raccolti nella chiave V_IN e avviare la predizione. Queste
operazioni possono essere ripetute più volte, �nché non si ottengono le informa-
zioni desiderate. L'apprendimento del modello avviene per mezzo della tecnica
del Gradient Descent [12], che sarà descritto più nello speci�co nel prossimo
capitolo. L'ultimo step è la predizione �nale del risultato da validare, che è quin-
di possibile confrontare con quello realmente calcolato dalla post-elaborazione
per determinarne la distanza. Come vedremo, una buona predizione può essere
motivo di rassicurazione sulla validità del test, ma in caso contrario si possono
aprire diversi scenari: qualora il modello generato non sia ritenuto opportuno,
può essere e�ettuata nuovamente l'esecuzione del validatore con una diversa pa-
rametrizzazione; qualora invece la stima di AITV sia in ogni caso troppo lontana
dal valore ottenuto dal layout, è plausibile che qualcosa sia andato storto in uno
dei tanti step della procedura di test.

3É comunque possibile sostituire il �le di risultati attualmente caricato in Concerto con un
altro relativo alla stessa tipologia di prova, per mezzo dell'ambiente Data Expoler, con cui si
accede ai diversi Datsource.
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Capitolo 3

Implementazione

La teorizzazione del sistema descritto nel capitolo precedente nasce da una con-
sapevolezza della necessità di consolidare i dati raccolti dai test, che può essere
maturata solo confrontandosi praticamente con gli aspetti più critici dell'attività
di ricerca sui motori. Analogamente la realizzazione di tale architettura richie-
de una conoscenza adeguata delle diverse tecnologie impiegate nello svolgimento
dei test in sala prova. Questo sistema non è solamente frutto del lavoro fatto in
questo progetto, ma anche dell'e�cienza dell'ormai matura piattaforma di test
su cui si poggia, che è di conseguenza idonea ad accogliere la struttura proposta.
Nei paragra� che seguono sono approfondite le fasi che hanno scandito l'imple-
mentazione dell'architettura �n qui delineata.

3.1 Automazione

L'automazione è stato il punto di partenza per l'implementazione del sistema
così come per la descrizione dell'architettura fornita nel capitolo precedente. É
infatti in sala prova che nascono i dati che AITV valida e solo in sala prova è
possibile acquisire e determinare i valori di tutte le grandezze su cui si basa la
predizione che AITV e�ettua.
Come descritto nel paragrafo 1.2.2, il prodotto dei test condotti in sala prova è
un �le di risultati o test result, strutturato in chiavi che raccolgono gruppi di
canali con i relativi valori acquisiti puntualmente o continuativamente. É bene
speci�care che ciascun tipo di chiave dispone di uno o più measurement ID1,
cioè porzioni della chiave ugualmente strutturate, ma acquisite in istanti diver-
si. Per ciascun measurement ID vengono aggiunte nuove righe, a mano a mano
che sono condotte misure puntuali o per ogni campione acquisito in una misura
continua.
Il lavoro che è stato necessario e�ettuare sull'automazione riguarda principal-

1Si tratta di una nomenclatura tipica di AVL Concerto [2].
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mente l'acquisizione dei dati preliminari per la predizione. La scelta migliore per
organizzare questi dati consiste nella creazione della chiave apposita V_IN, che
si aggiunge così alla struttura del test result speci�ca di ogni tipologia di pro-
va. In molti casi i valori raccolti in V_IN sono comunque presenti in altre chiavi
del �le di risultati, ma il metodo adottato, sebbene introduca una ridondanza,
garantisce ordine e una facile fruibilità di questi dati in fase di elaborazione e
validazione. Ad ogni modo, tale ripetitività nell'acquisizione non costituisce cer-
tamente un motivo di ine�cienza per quanto riguarda gli spazi d'archiviazione,
data la modesta dimensione della chiave V_IN.
A ciascuna tipologia di prova sono associati i caratterizzanti parametri prelimina-
ri da acquisire. In alcuni casi si tratta di valori noti già prima dell'avvio del test,
ma talvolta è necessario acquisire determinate grandezze durante la prova stessa.
Nell'esempio costituito dal caso di studio proposto nel capitolo 4, il Lambda Step,
è necessario salvare il valore di temperatura del catalizzatore prima dell'esecuzio-
ne delle transizioni di lambda. In questi casi il lavoro compiuto sull'automazione
potrebbe comportare anche l'inserimento - nell'algoritmo di test - di procedure
apposite volte all'ottenimento dei dati preliminari: potrebbe essere necessario ad
esempio portare il motore in un particolare punto operativo, che magari non è
teoricamente richiesto dalla prova, o anche mettere in misura uno strumento che
altrimenti non sarebbe indispensabile. Queste operazioni non devono comunque
compromettere la validità della prova, rispettando tutti i vincoli descritti dalla
normativa associata.
Facendo riferimento alla classi�cazione fatta nel paragrafo 1.2.2, si sottolinea che
la chiave V_IN è di tipo logpoint, cioè è frutto di un salvataggio puntuale, che si
di�erenzia dal quello continuo dei recorder. Tendenzialmente questo tipo di ac-
quisizione è detta measurement, poiché è tipica delle misure stazionarie in cui
ad ogni grandezza richiesta e associata una media dei valori accumulati in una
data �nestra temporale. Nelle prove stazionarie, come ad esempio il cosiddetto
Engine Map (o Piano Quotato), le chiavi logpoint di misura sono su�cienti a
contenere tutti i dati signi�cativi del test. Oltre a questo impiego, le acquisizioni
di tipo puntuale sono anche adoperate per l'immagazzinamento di dati, quali co-
stanti o input generici dell'utente, che sono semplicemente archiviati nella chiave
target senza calcolare una media.
É stato scelto questo tipo di chiave per V_IN perché perfettamente idoneo a rac-
cogliere i dati preliminari che, come già detto, si presentano come costanti note
o come valori da acquisire puntualmente. Non è in�ne raro trovare nella chiave
V_IN più righe: alcune prove consistono nel ripetere ciclicamente una procedura
su diversi punti operativi del motore e per ciascuno di essi i parametri caratteriz-
zanti da inserire in V_IN variano anche sensibilmente. É esattamente il caso del
Lambda Step, descritto nel capitolo 4: le transizioni di lambda sono e�ettuate su
15 punti operativi e per ciascuno di essi è riportato una riga in V_IN.
De�nita la struttura desiderata per i dati preliminari e stabilito che ciascuna
prova prevede uno o più punti dell'algoritmo di test in cui acquisire e salvare
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Figura 3.1: BSQ di PUMA.

questi parametri, non resta che analizzare le tecniche di salvataggio adoperate
per la chiave V_IN nei due diversi sistemi di automazione, PUMA e AdaMo.

3.1.1 AVL PUMA Open

Il salvataggio dei dati preliminari è dunque e�ettuato come una semplice scrittu-
ra di una riga sotto V_IN a partire da variabili (dette Quantity o NormName)
di PUMA, che devono essere disponibili e consistentemente valorizzate al mo-
mento del salvataggio.
La natura e la modalità di acquisizione dei valori delle quantity richieste variano
in base alla tipologia di dati preliminari che caratterizzano la prova. Potrebbero
infatti riguardare parametri costanti e noti già prima dell'avvio del test o al con-
trario potrebbe essere richiesta l'acquisizione contestuale di speci�che grandezze.
In ogni caso il sistema d'automazione AVL PUMA Open fornisce un'approccio
ben strutturato alla misura stazionaria, con tecniche fruibili manualmente o
all'interno di un test automatico.
Prima di analizzare i metodi di salvataggio messi a disposizione dal sistema, è
bene introdurre sinteticamente alcuni dei principi di funzionamento di PUMA.
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Nel POI (PUMA Open Interface, GUI di PUMA), il sistema può presentarsi in
tre stati:

1. MONITOR Stato base in cui è concesso il controllo generale di tutti i sen-
sori, attuatori e strumenti connessi al banco, in base alla parametrizzazione
dei due loadset che è necessario caricare:

� SYS (System Parameters), che contiene le impostazioni generali della
sala prova ed è suddiviso in blocchi di vario tipo, come ad esempio:

� SCP, per la con�gurazione del freno e dei controllori di Giri (o
Coppia) che agiscono su di esso

� EMC, per la parametrizzazione di segnali e controllori di basso
livello della sala prova

� FFS, per le caratteristiche dei sensori connessi e ingressi/uscite
analogiche/digitali

� CAN, per con�gurare comunicazioni su CAN Bus
� MDV e EBH, per la con�gurazione degli strumenti di misura
� ASC e TCC, per de�nire macchine a stati in linguaggio VBS
� FDV, per de�nire formule
� SCR, per implementare VBScript eseguibili nel POI
� GWA, per de�nire limiti d'allarme su determinate quantity e le
relative reazioni del sistema in caso di superamento della soglia

� MEI, per con�gurare la comunicazione ASAP3 [7] con l'applica-
tion system (tipicamente ETAS INCA) e i parametri scambiati

� PID, per con�gurare controllori PID ad esempio per scambiatori
termici

� LTC, per de�nire lookup tables

� TFP (Test Facility Parameters), che descrive la parametrizzazione
comune di tutto il test�eld e che quindi teoricamente dovrebbe es-
sere uguale per tutte le sale prova dello stesso sito. Può contenere
blocchi di alcuni tipi comuni anche al SYS, ma in particolare presen-
ta diversi blocchi DST (Data Storage Table), anche noti come piani
di memorizzazione. Ciascuno di essi rappresenta un raggruppamento
di quantity a cui si può fare riferimento nella de�nizione di misure
stazionarie o di recorder. É buona prassi organizzare questi blocchi
in modo tale che possano identi�care degli insiemi di variabili acco-
munate dalla stessa natura. Per esempio è consueto creare un DST
per tutte le quantity relative alle concentrazioni dei vari inquinanti,
provenienti dai banchi analisi.
Inoltre il loadset TFP contiene il blocco KEY, nel quale sono dichia-
rate le chiavi di memorizzazione che andranno a comporre il �le di
risultati del test. In questo blocco sono riportate chiavi di due tipi:
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� Internal Key, che PUMA utilizza per archiviare automatica-
mente dati e informazioni di log durante le transizioni nei vari
stati di funzionamento;

� Measured Data Key, a cui l'utente può associare l'area di
archiviazione di una misura stazionaria;

2. MANUAL Stato completamente operativo di PUMA, in cui è possibile
accendere e manovrare il motore, e�ettuare misure stazionarie e avviare
o interrompere recorder. Per raggiungerlo è necessario caricare altri due
loadset precedentemente con�gurati:

� UUT (Unit Under Test Parameters), che costituisce la con�gura-
zione del motore in prova, per mezzo della dichiarazione di parame-
tri generali che lo descrivono e di strutture ad esso associate. An-
che nel loadset UUT è possibile inserire tipi di blocco disponibili nel
SYS o nel TFP, ma presenta in particolare i seguenti blocchi che lo
caratterizzano:

� ECT, blocco di parametrizzazione del motore, nel quale sono
dichiarati valori di riferimento di Velocità e Coppia, oltre ad altre
quantity libere;

� EMP, blocco in cui è riportata la Engine Map o Full load Cur-
ve, che riporta la massima Coppia disponibile per ogni valore di
Velocità del motore. Questa curva è sovrascrivibile nello stato di
MANUAL, con un'apposita procedura automatica embedded di
PUMA. Di fatto la EMP caratterizza la UUT ed è fondamen-
tale per l'esecuzione degli statutory test (cicli omologativi) che
consistono in pro�li di Giri e Coppia calcolati a partire da tale
curva.

� TST (Test Parameters), che contiene l'algoritmo di test, il quale fa
riferimento all'intera struttura precedentemente descritta. Per questo
motivo è necessario che vi sia coerenza e consistenza con la parametriz-
zazione di banco (SYS), di memorizzazione (TFP) e di unità di prova
(UUT) attualmente caricate. Il TST permette di descrivere quindi
una procedura di test automatica, che può prevedere il controllo del
motore in diversi punti operativi, un'interazione con l'utente, l'esecu-
zione di VBScript, il lancio di misure stazionarie, l'avvio di recorder
e molte altre operazioni. L'algoritmo o BSQ (Block Sequence) con-
siste sostanzialmente in un diagramma di �usso composto da diversi
"mattoncini" chiamati AO (Activation Object) pre-implementati e
disponibili nel toolbox (Fig.3.2). Ciascun AO è in realtà riconduci-
bile a determinate function o sub VB ed è dunque possibile creare
VBScript con lo scopo di e�ettuare molte delle operazioni eseguibili
con gli appositi AO. Questa scelta può infatti risultare preferibile per
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rendere il BSQ più leggero ed e�ciente.
All'interno del TST tuttavia vanno con�gurati alcuni oggetti utili per
il test, alcuni dei quali sono fruibili anche nello stato di MANUAL.
In particolare, per quanto riguarda il salvataggio dei dati, è possibile
de�nire Recorder e Measurement Request (o MRQ), a ciascuno dei
quali sono associati:

� i DST contenenti le quantity da salvare (si noti che tali DST
devono essere presenti nel TFP caricato, per coerenza di contesto)

� la chiave sotto cui memorizzare il salvataggio

Una volta inseriti questi oggetti nella test library, possono essere uti-
lizzati all'interno del BSQ come argomenti di appositi AO (o di VB-
Script) ma sono già disponibili nello stato di MANUAL, in cui il TST
è ormai caricato. In questo modo è possibile avviare anche manual-
mente misure stazionarie o recorder, senza che sia necessariamente il
test automatico a farlo. Un discorso analogo vale per tutti gli VB-
Script presenti nella libreria del TST, così come limiti d'allarme.
Altri oggetti che possono essere inseriti nella libreria sono le SubRou-
tine, cioè porzioni di �owchart del tutto analoghe al "main" BSQ, di
cui sono quindi sotto-procedure, e gli SSQ (StepSequence), che con-
sistono in una successione di step elementari nei quali il motore è
portato in un dato punto operativo, con un certo tempo di rampa e
un certo periodo di assestamento. Il set di Giri e/o Coppia, i tem-
pi e altre impostazioni che regolano l'SSQ prendono il nome di Step
Bu�er Variable e possono essere parametrizzate con gli ASC (As-
signment Script, anche noti come Step Bu�er Formula), vale a dire
una speciale tipologia di script utili a manipolare tali variabili in un
linguaggio derivato da Visual Basic. Al momento dell'esecuzione di
uno step di un SSQ, la parte del sistema PUMA che gira su Windows
è incaricata di assegnare valori alle Step Bu�er Variablea secondo l'A-
SC caricato, ma è la parte real time di PUMA (INtime) ad eseguire il
controllo sulla unit under test.

3. AUTOMATIC Stato in cui il sistema prende integralmente il controllo
del banco e del motore, al quale si può approdare dallo stato di MANUAL.
Una volta richiesto lo stato di AUTOMATIC, è lanciato il BSQ con�gu-
rato nel loadset TST. Al complemtamento del test automatico, il sistema
torna nello stato di MANUAL o direttamente in quello di MONITOR,
a seconda dell'implementazione fatta: l'AO Interrupt Testrun porta in
MANUAL mentre End Testrun porta in MONITOR). Diversamente l'in-
terruzione del BSQ potrebbe non essere prevista, ma innescata da condizio-
ni d'allarme e in tal caso il sistema torna solitamente in MANUAL. Failure
molto gravi potrebbero tuttavia portare in sicurezza il sistema, ponendolo
in MONITOR.
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Figura 3.2: Procedura di misura in PUMA.
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De�niti questi concetti generali sul funzionamento del sistema AVL PUMAOpen,
è possibile ora scendere maggiormente nel dettaglio delle misure stazionarie sui
cui poniamo l'attenzione per via del loro ruolo cruciale nell'acquisizione dei dati
per la chiave V_IN.
La �gura 3.2 descrive la procedura di Steady State Measurement, che può
quindi essere eseguita manualmente dall'operatore nello stato MANUAL o au-
tomaticamente dal TST nello stato AUTOMATIC. Può essere sintetizzata nelle
seguenti 4 fasi:

1. Measurement Preparation o Pre-Measurement, in cui sono preparati gli
strumenti di misura coinvolti e sono calcolate formule preliminari;

2. Measurement Execution, in cui sono posti in stato di misura tutti gli stru-
menti e sono di conseguenza acquisiti i valori di tutte le variabili coinvolte,
da cui è in�ne calcolata la media nel tempo di misura;

3. Post-measurement Procedures, in cui sono e�ettuate operazioni di pu-
lizia o reset sugli strumenti e sono calcolate formule a partire dai valori
raccolti;

4. Storage Storage, in cui sono calcolate altre formule propedeutiche al sal-
vataggio e sono in�ne archiviati i risultati della misura.

La seconda fase rappresenta naturalmente il passaggio più importante di questa
procedura ed è riportata nel dettaglio in �g. 3.3, che ne illustra la forte dipen-
denza dallo stato della unit under test. Perché i dati raccolti in fase di misura
siano consistenti, è infatti necessario che il motore sia stabile attorno ai valori
impostati di Velocità, Coppia e Carico.
É bene speci�care che in generale l'automazione di sala prova controlla il motore
secondo una caratteristica o modalità di controllo (control mode), rappresen-
tata dalle due grandezze in base alle quali sono pilotati rispettivamente il freno
e il motore. Al freno infatti è solitamente trasmesso - per il controllo in retroa-
zione - un set point (o demand value) di Velocità, al quale esso limita il motore
(freno stazionario o freno dinamico in modalità passiva) o che garantisce ero-
gando eventualmente una Coppia motrice (freno dinamico in modalità attiva).
É tuttavia possibile anche trasmettere al freno un set di Coppia (solo per un
freno dinamico in modalità attiva) che esso insegue frenando laddove la Coppia
misurata sia più bassa del set point e trascinando in caso contrario. Analogamen-
te il motore può essere controllato in più modi, traducendo il controllo sempre
nell'attuazione di una richiesta di pedale trasmessa alla ECU. Questo set point
può consistere semplicemente in un valore secco di pedale o Alpha, espresso in
percentuale, su cui non è e�ettuato nessun controllo. In alternativa la richiesta
di acceleratore può essere l'output di un controllo in retroazione su un valore
obiettivo di Coppia, che agisce aumentando la richiesta al diminuire della pro-
cess variable (la Coppia misurata) e diminuendolo in caso contrario. Allo stesso
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modo è possibile calcolare l'output dell'acceleratore in base ad altre grandezze -
quali ad esempio la Potenza o la Pressione Media E�ettiva (PME) - attuando il
cosiddetto x-control.
Tale dicotomia di variabili esprime quindi il control mode del punto operativo
ed è uno dei parametri di ciascuno step dell'SSQ che può essere modi�cato via
ASC. Molto spesso l'esecuzione dell'MRQ è parte di uno di questi step e il suo
esito e la sua durata sono fortemente condizionati dalla stabilizzazione del punto
operativo così de�nito. La �gura 3.3 fa riferimento in particolare alla stabiliz-
zazione della Velocità e mostra la suddivisione temporale dell'esecuzione di uno
step con richiamo di MRQ. Di seguito è fornita una breve legenda:

1. tr (ramp time): il tempo richiesto per raggiungere il target di Velocità;

2. tctrl (control time): il tempo necessario a stabilizzare la Velocità;

3. tw∆1 (waiting time 1): il tempo di attesa prima dell'avvio dell'acquisizio-
ne, che somma il tempo di rampa (1) e il tempo di controllo (2);

4. tm (measuring time): il tempo di acquisizione dei valori delle variabili
associate a sensori, strumenti e qualsiasi altro elemento dell'automazione;

5. ts (step time): il tempo complessivo richiesto dallo step, che somma il
tempo di rampa (1), il tempo di controllo (2), il tempo di misura (4) e il
tempo di attesa �nale (8);

6. actual speed value: il valore attuale della variabile di controllo;

7. demand speed value: il set point della variabile di controllo;

8. tw∆2 (waiting time 2): il tempo di attesa successivo alla misura, dopo il
quale giunge alla conclusione lo step.

A questo punto è possibile de�nire le modalità d'implementazione adoperate per
l'acquisizione dei dati archiviati sotto la chiave V_IN. Con riferimento alla proce-
dura appena descritta, distinguiamo tre casi in base alla natura dei parametri pre-
liminari che caratterizzano la prova, posto che la de�nizione dell'MRQ V_IN_MRQ
contenga i riferimenti alle quantity che identi�cano i parametri preliminari della
prova.

� Nel caso in cui sia su�ciente salvare grandezze già note, come ad esempio
l'età (in ore) del motore o dell'ATS, è su�ciente utilizzare l'operazione di
Store Snapshot, che corrisponde all'esecuzione atomica della quarta fa-
se della procedura di Steady State Measurement. Tale comando trascrive
semplicemente sotto la chiave indicata i valori correnti delle quantity coin-
volte ed è eseguibile tramite l'apposito AO. Inoltre è disponibile anche in
linguaggio VB per l'esecuzione da script - sia nel BSQ sia manualmente -
tramite la Sub MrqSnapshot così de�nita:
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Figura 3.3: Struttura di uno step di un SSQ.
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Sub MrqSnapshot(Name, Key, WaitForCompletion, MonitorTimeout,
Timeout)
dove

� Name è il nome della MRQ invocata

� Key è il nome della chiave sotto cui archiviare i dati

� WaitForCompletion è un �ag tramite il quale è possibile eseguire la
Sub in modo sincrono (valore 0) o asincrono (1), cioè attendendo o
meno il completamento dell'operazione di store

� MonitorTimeout è un �ag che attiva (valore 1) o disattiva (valore 0)
il monitoraggio tramite timeout dell'operazione

� Timeout è l'intervallo di tempo di timeout, oltre il quale l'operazione
è considerata fallita

� Nel caso in cui sia invece necessario e�ettuare un'acquisizione da uno stru-
mento di misura o estrarre la media di determinati valori in un dato in-
tervallo temporale, è necessario e�ettuare un'operazione di Steady State
Measurement completa. L'esecuzione dei task di preparazione e calcolo
sui vari strumenti è e�ettuata automaticamente da PUMA ed è su�ciente
invocare nel BSQ l'AO di Steady State Measurement With Storing
indicante l'MRQ di riferimento V_IN_MRQ, tra gli altri parametri (�g 3.4).
Inoltre è disponibile anche in questo caso una Sub VB:
MrqMeasureAndStore(Name, MeasTime, Key, MonitorTimeout,
Timeout)
dove

� Name è il nome della MRQ invocata

� MeasTime è il tempo di misura, nel quale sono raccolti i valori delle
quantity coinvolte, da cui è in�ne estratta la media; questo valore
sovrascrive quello indicato nella de�nizione della MRQ

� Key è il nome della chiave sotto cui archiviare i dati

� MonitorTimeout è un �ag che attiva (valore 1) o disattiva (valore 0)
il monitoraggio tramite timeout della misura

� Timeout è l'intervallo di tempo di timeout, oltre il quale la misura è
considerata fallita

� Nel caso in cui sia necessario controllare il motore in uno speci�co pun-
to operativo, è utilizzato il meccanismo di richiamo delle MRQ negli Step
Sequence (SSQ) descritti precedentemente. A tale scopo sono disponibili
speci�che Step Bu�er Variable per modi�care dinamicamente i para-
metri della MRQ richiamata per mezzo degli ASC (Assignment Script),
descritte nella tabella 3.1.
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Figura 3.4: Activation Object per eseguire un'operazione di Steady State
Measurement in un BSQ.

In ogni caso, in�ne, sono sempre presenti nella chiave V_IN le due quantity
Test_Type e TestBench, che indicano rispettivamente la tipologia di test e�et-
tuato (stabilito nel TST) e il nome della sala prova di riferimento (parametrizzato
nel SYS), secondo una nomenclatura standard adottata per questo progetto. L'u-
tilità di memorizzare queste informazioni sarà esplicitata più avanti, in merito
all'implementazione dei componenti software FileConverter, Parser e AITV.

3.1.2 EURINS AdaMo

Quanto descritto nel paragrafo precedente per l'automation system AVL PUMA
Open, fa riferimento a metodologie frutto di concetti teorizzati e resi disponibili
da AVL nella loro suite. La natura del sistema EURINS AdaMo è invece votata a
uno spettro di applicazioni più ampio, quindi non solamente di tipo automotive.
Le sue caratteristiche di �essibilità e granularità, che garantiscono di personaliz-
zare molto le implementazioni, hanno permesso la realizzazione di strutture che
costituissero una base comune a quella embedded di PUMA.
AdaMo Windows, ovvero il sottosistema front-end di AdaMo in esecuzione sul
PC desktop, possiede un ambiente di con�gurazione o�ine ed un solo stato ope-
rativo online detto Run. In questo stato sono disponibili tutti i canali logici
(corrispondenti alle quantity di PUMA), che possono essere per il sistema de-
gli input, cioè segnali o valori leggibili ma non editabili in un normale task di
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Parameters MRQ bu�er variable
Measuring time Mbv_mtim
Result key Mbv_rkey
Data storage tables Mbv_dsts
Timeout Mbv_tout
Pre-measurement (formulas) Mbv_pref
Post-measurement (formulas) Mbv_pof
Pre-storage (formulas) Mbv_stof
Reference to used measurement evaluation de�nition Mbv_eval
Reaction on measurement evaluation failure Mbv_enok
Reaction on measurement failure Mbv_mnok
Reaction on stabilization failure Mbv_snok
Reference to used stabilization de�nition Mbv_stab

Tabella 3.1: Le Step Bu�er Variable che si riferiscono alla gestione di un MRQ
in uno step di un SSQ.

AdaMo, o degli output, che sono invece leggibili ed editabili. Seguendo una
classi�cazione basata sulla loro natura, i canali possono essere così suddivisi:

� Costanti, parametri di input con�gurabili o�ine (anche editabili online)
suddivisi in parametri di banco (legati alla sala prova) e in parametri del-
la UUT (legati alla unit under test); possono essere di tipo numerico o
testuale.

� Virtuali, canali liberi e cioè non legati a dispositivi o sorgenti �siche,
ma che sono fondamentali per la realizzazione di architetture SW e per
la programmazione dei test automatici; possono essere input o output
numerici.

� Manuali, canali di input legati a �nestre in cui l'utente può inserire appun-
to manualmente il valore desiderato per il canale; come le costanti, possono
essere di tipo numerico o testuale.

� Formula, canali di input (poiché non sovrascrivibili nei task) numerici che
associano un'espressione di calcolo a canali di input o output.

� Real Time, canali di input e output numerici gestiti dal sottosistema real
time di AdaMo, in esecuzione sul CompactRIO; qualsiasi canale associato
a sensori, strumenti o dispositivi di altra natura connessi al sistema AdaMo
Real Time, sarà classi�cato come canale Real Time.

� ASAP3, canali di input associati alla comunicazione via protocollo ASAP
[7] con l'application system che controlla la ECU.
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Figura 3.5: Pagina di un'Azione Generica di AdaMo.

� RS232-TCP/IP, canali di input e output, numerici e testuali, associati a
strumenti di misura connessi ad AdaMo Windows, astratti da comandi di
interrogazione implementati nei diversi protocolli, tipicamente AK [13].

A ciascuno dei canali di tipo numerico è possibile associare tre properties : un'u-
nità di misura, il numero di decimali richiesti e una scala. Quest'ultima, descritta
da un �le scl, applica stabilmente una funzione (anche di grado maggiore di 1) al
canale, i cui valori sono così dinamicamente trasformati. Inoltre può essere utile
associare un canale di input ad un canale di output, in modo tale che il valore
del primo sia scritto automaticamente sul secondo, con un periodo assicurato di
50 ms.
I valori di queste variabili possono essere salvati con diverse tecniche su un �le te-
stuale, dotato di un'intestazione parametrizzabile. Le metodologie di salvataggio
sono tre:

� il salvataggio continuo, analogo al Recorder di PUMA, permette di acqui-
sire dati in maniera continuativa con una frequenza selezionabile;

� il salvataggio manuale, analogo alla Steady State Measurement completa
di PUMA, permette di acquisire una media dei valori in un dato intervallo
temporale;

� il salvataggio immediato, che esegue una media temporale dei valori in
un dato intervallo antecedente al comando di salvataggio.

Nello stato operativo di Run di AdaMo, è possibile e�ettuare operazioni e scrive-
re sui canali di output per mezzo dei task citati precedentemente. Essi prendono
il nome diAzioni (�les act) e possono avere un'esecuzione atomica o ciclica. Esi-
stono 20 canali numerici speciali detti contatori utilizzati all'interno dell'azione
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come "variabili d'appoggio". Ogni azione è suddivisa in diverse pagine, ovve-
ro diversi step sintatticamente uguali, composti dalle seguenti porzioni eseguite
sequenzialmente:

1. Inizializzazione dei contatori, con cui si assegna a ciascuno di essi -
all'inizio dell'esecuzione dello step - un valore costante o quello di un canale
logico; di default è associato il valore attuale del contatore;

2. Condizione, nella quale sono richiamati canali di qualsiasi tipo e che deter-
mina con il suo esito (True o False), l'esecuzione della relativa operazione;

3. Operazione True, eseguita in caso di Condizione veri�cata, consiste nelle
seguenti operazioni facoltative fondamentali:

� avvio o interruzione di un salvataggio continuo oppure esecuzione di
un salvataggio manuale o immediato;

� scrittura su canali di output di formule2 scritte a partire da diversi
canali logici; è possibile anche scrivere su canali di output testuali
concatenando stringhe corrispondenti ad altri canali di tipo testuale;

� attesa, prima del completamento dello step, del tempo indicato3;

� istruzione di controllo di �usso, per saltare ad uno step antecedente o
successivo dell'azione, oppure per ciclare sullo stesso step.

4. Operazione False, sintatticamente del tutto uguale all'operazione True,
eseguita in caso di Condizione non veri�cata.

De�nita la struttura di un'azione, è opportuno ora fare una distinzione tra due
tipologie. Le Azioni RSTCP (�les RSTCP.act) permettono - nelle sezioni Ope-
razione True e Operazione False - la scrittura su canali di output relativi a
protocolli RS232-TCP/IP di comunicazione con strumenti di misura. Le Azioni
Generiche (�les GEN.act) invece permettono - nelle stesse sezioni - la scrittu-
ra su qualsiasi canale di output e permettono anche di invocare azioni RSTCP,
di cui non attendono il completamento. Molto spesso infatti le azioni RSTCP
hanno una struttura ciclica, grazie alla quale restano in esecuzione in background
permettendo però all'Azione Generica chiamante di passare allo step successivo.
Un canale di output testuale di notevole importanza è SYSTEM exec, tramite il
quale è possibile lanciare comandi di vario genere al sistema, assegnandoli a que-
sto canale di output. Molto utile per acquisire i dati della chiave V_IN è risultato
in particolare il comando SNAPLOG, che permette di trascrivere istantaneamente
il valore di alcuni canali su un �le di testo qualsiasi, diverso da quello deputato

2Non si tratta di canali di tipo formula, ma calcoli implementati nello stesso scope

dell'azione.
3Questo tempo non può essere inferiore a 50 ms per le Azioni Generiche.
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Figura 3.6: Pagina di una Sequenza di AdaMo.

a raccogliere i risultati del test, sul quale scrivono le classiche operazioni di sal-
vataggio. Questo comando è dotato della seguente sintassi:
SNAPLOG__<path log file>\t<freename00>\t<value00>\t<freename01>\t
<value01>...
dove

� <path log file> è il path assoluto del �le di testo su cui vengono scritti
i dati;

� <freename**> è una label d'intestazione a cui associare il valore indicato
successivamente; è un testo libero quindi non dev'essere necessariamente
uguale al nome di un canale;

� <value**> è il valore da associare alla label <freename**>; può esse-
re scritto direttamente un valore costante numerico o testuale oppure è
possibile utilizzare il valore attuale di un canale logico per mezzo della
concatenazione di una stringa.

L'implementazione delle prove automatiche è e�ettuata per mezzo della scrittura
di algoritmi chiamati Sequenze (�les prv), sintatticamente simili alle azioni,
composte anch'esse da una successione di pagine o step, ciascuno dei quali è
strutturato in questo modo:

1. Inizializzazione dei contatori, del tutto analogo all'inizializzazione fatta
nelle azioni;
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2. Condizione, analogamente alle azioni, determina con il suo esito (True o
False), l'esecuzione della relativa operazione;

3. Operazione True, eseguita in caso di Condizione veri�cata, consiste nelle
seguenti operazioni facoltative:

� scrittura sui contatori di formule numeriche scritte a partire da diversi
canali logici;

� esecuzione di un'Azione Generica, di cui si attende il completamento;

� istruzione di controllo di �usso, per saltare ad uno step antecedente o
successivo dell'azione, oppure per ciclare sullo stesso step.

4. Operazione False, sintatticamente uguale all'operazione True, ma ese-
guita in caso di Condizione non veri�cata;

5. Caricamento Allarmi, per caratterizzare lo step con delle soglie d'allar-
me ad hoc.

Va precisato che in generale il valore assunto dai contatori nell'esecuzione di uno
step della sequenza sono poi i valori di partenza nel contesto dell'eventuale azione
richiamata. In questo modo è possibile passare dei parametri dalla sequenza
all'azione richiamata, come se fosse una funzione.
Per tanti aspetti è possibile trovare un'analogia tra la sequenza di AdaMo e il
BSQ di PUMA e parallelamente tra le azioni di AdaMo e le SubRoutine di PU-
MA. Il concetto chiave della programmazione dei test su un qualsiasi sistema
d'automazione di sala prova è dunque proprio l'organizzazione degli algoritmi
in procedure main (sequenze o BSQ) che richiamano sotto-procedure (azioni o
SubRoutine), con cui condividono i canali come variabili globali.
L'architettura appena descritta mette a disposizione tutti gli strumenti necessari
a creare strutture per l'acquisizione dei parametri preliminari nella chiave V_IN,
in modo del tutto analogo rispetto a quanto descritto per AVL PUMA Open.
In particolare, è immediato intuire che il test sarà implementato come una se-
quenza, in cui uno dei primi step richiama un'azione deputata al salvataggio dei
dati. Quest'ultima potrà essere implementata diversamente in base alle stesse
tre categorie descritte nel paragrafo precedente:

� Nel caso in cui sia su�ciente salvare grandezze già note, l'azione è composta
da un solo step nel quale è scritto sul canale SYSTEM exec il comando
SNAPLOG, a cui sono passati come parametri label e valori corrispondenti ai
canali coinvolti.

� Nel caso in cui sia invece necessario e�ettuare un'acquisizione da uno stru-
mento di misura o estrarre la media di determinati valori in un dato in-
tervallo temporale, bisogna anteporre allo step di SNAPLOG altri step che
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richiamino le azioni RSTCP necessarie a porre in stato di misura gli stru-
menti coinvolti e ancora altri step funzionali al calcolo della media sui valori
dei canali coinvolti.

� Nel caso in cui sia anche necessario controllare il motore in uno speci�co
punto operativo, bisogna inserire ulteriori step per il controllo del motore
tramite i canali logici di output verso freno e pedale.

Anche in questo caso, in�ne, è memorizzata nella chiave V_IN una stringa indi-
cante la tipologia di test e�ettuato, secondo la nomenclatura adottata per questo
progetto. Di�erentemente da quanto fatto per PUMA, non è necessario "spreca-
re" una quantity - o, più propriamente per AdaMo, un canale logico - per questo
scopo, ma è su�ciente utilizzare nel comando SNAPLOG la label Test_Type segui-
ta dalla stringa indicante il nome della prova, senza dover concatenare un canale
logico di tipo testuale. Al contrario la stringa indicante il nome della sala prova di
provenienza, anch'essa registrata sistematicamente in V_IN, è memorizzata nella
Costante di banco TestBench, chiamata esattamente come la relativa quantity
di PUMA.

3.2 Archiviazione

I dati raccolti nel corso del test, per mezzo delle acquisizioni continue o stazio-
narie, sono riportati nel �le di risultati che costituisce il prodotto della prova
e�ettuata. La sua struttura è naturalmente de�nita contestualmente all'imple-
mentazione del test in sala prova, in base a modalità e parametrizzazione delle
istruzioni di salvataggio inserite nell'algoritmo. Tuttavia è fondamentale che
l'organizzazione delle chiavi di memorizzazione, in cui è suddiviso il test result,
sia stabilita anche in virtù dello sviluppo di layout di post-elaborazione da cui
ottenere il report della prova.
Nel paragrafo 1.2.2 è stata o�erta una descrizione delle tipologie di chiave, che a
questo punto è opportuno approfondire.

1. Le chiavi Time Based, sono frutto di acquisizioni continue (ad esempio
il prodotto di un recorder di PUMA) di un determinato insieme di canali,
tra cui c'è quello fondamentale della base tempo, con unità di misu-
ra secondi o millisecondi, che tendenzialmente prende il nome di time o
recorder_time. Nel caso in cui ci siano più canali indicanti la grandezza
tempo, è necessario che almeno uno abbia andamento monotono crescente,
perché possa essere preso come riferimento. Su tale base può essere ana-
lizzata l'evoluzione temporale delle grandezze associate a tutti i restanti
canali.
Inoltre una chiave Time Based può presentare più mesurement ID, cioè
più di una collezione di dati continuativa. Questo è l'e�etto che si ottiene
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avviando e interrompendo un recorder a più riprese: ogni measurement ID
identi�ca dunque un intervallo di tempo in cui l'acquisizione è stata attiva.
Un esempio appropriato è costituito dal ciclo omologativo WHTC [10], che
è composto da due fasi in ciascuna delle quali è e�ettuata una registrazione
continua dei canali necessari con frequenza pari a 10 Hz (un campione ogni
100 millisecondi). La chiave Time Based derivante da questa acquisizione
è organizzata quindi in due measurement ID, uno per ciascuna fase.

2. Le chiavi LogPoint Based, derivano invece da misure stazionarie o ac-
quisizioni puntuali con il metodo dello Store Snapshot. Se le chiavi Time
Based sono adoperate soprattutto per e�ettuare acquisizioni quando il mo-
tore è sottoposto a transitori di giri e carico, queste chiavi sono invece
utilizzate per acquisizioni in punti operativi stazionari e per questo motivo
non è necessario individuare una base tempo. Ciascun measurement ID
di una chiave logpoint-based può comunque disporre di più righe o - più
precisamente - di più punti, ovvero acquisizioni successive che si è scelto di
legare ad un solo measurement ID. É in realtà questo il caso più frequente
per test di tipo stazionario come il già citato Piano Quotato o Engine Map:
si adopera una chiave per memorizzare le misure stazionarie e sotto un solo
measurement ID sono acquisiti tutti i punti della mappa e�ettuata.

É doveroso precisare, tuttavia, che la terminologia adottata per descrivere strut-
ture è in realtà riferita alla convenzione adottata da AVL per i �le di risultati
derivati da sistemi PUMA Open e su cui si basa sostanzialmente l'achitettura di
calcolo e presentazione gra�ca di Concerto. Come anticipato nel capitolo prece-
dente, lo standard di riferimento per questo formato è ASAM ODS [3] [9] e ad
esso si attiene l'architettura del database dei test results di PUMA, di cui ogni
�le di risultati costituisce un record, esportabile nel formato ASAM di trasporto
ATF [14].
D'altro canto il sistema d'automazione AdaMo utilizza un �le di testo per l'output
dei dati raccolti, che possiedono un'intestazione seguita da una matrice composta
da tante colonne quanti sono i canali posti in acquisizione e tante righe quanti
sono i campioni raccolti. Durante un salvataggio continuo è aggiunta al �le una
riga alla volta con una velocità dipendente dalla frequenza impostata. Al con-
trario, nel caso di un salvataggio manuale è aggiunta una sola riga, al termine
dell'intervallo di tempo in cui sono accumulati i dati per il calcolo della media.
AdaMo consente inoltre di cambiare il �le di risultati non solo manualmente,
ma anche per mezzo di un'istruzione apposita da eseguire mediante la tecnica di
scrittura sul canale SYSTEM exec descritta nel paragrafo precedente. Il comando
ha la seguente sintassi:
DATA FILE__[absolute path file *.ASCII]
nel quale va indicato il path assoluto del nuovo �le di risultati, anche mediante
concatenazione stringhe utilizzando canali logici testuali contenenti porzioni del
path.
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In questo modo è possibile avviare acquisizioni continue a più riprese e memo-
rizzare i dati in �le separati e, facendo riferimento allo stesso esempio del ciclo
omologativo WHTC, questo metodo permette dunque di associare ad ogni fase
del test un proprio �le.
Un discorso a parte va invece fatto per l'istruzione SNAPLOG menzionata a pro-
posito della chiave V_IN, che produce un �le di testo separato che nulla ha a
che vedere con quello canonico - che possiamo chiamare standard - su cui Ada-
Mo scrive i dati raccolti dai classici salvataggi continui o puntuali. Questo �le
si troverà al path indicato tra i parametri del comando ed è inoltre sprovvisto
dell'intestazione: si presenta infatti come una matrice composta da tante colon-
ne quanti sono i canali (o più precisamente le label) richiamati nel comando di
SNAPLOG e tante righe quanti sono i campioni raccolti nelle esecuzioni consecutive
dell'istruzione sullo stesso �le di testo.
Il principio adottato nell'implementazione delle prove per l'organizzazione dei
dati acquisiti segue una semplice analogia tra le chiavi di memorizzazione uti-
lizzate da PUMA e i �le di testo creati da AdaMo. In sintesi si può desumere
che, data l'implementazione di una speci�ca prova, per ogni measurement ID di
una chiave time based di PUMA c'è un �le di testo (standard) di AdaMo in cui
sono trascritti i dati acquisiti alla frequenza prestabilita; analogamente per ogni
measurement ID di una chiave logpoint di PUMA c'è un �le prodotto da una o
più istruzioni SNAPLOG.
Si desume da questa descrizione che l'unica via per ottenere una post-elaborazione
uni�cata e neutra rispetto all'automazione di provenienza è la ricerca di una
struttura comune ai due sistemi PUMA e AdaMo. Questo rappresenta inoltre
l'unico modo per garantire un'archiviazione centralizzata di tutti i test results.
Se da un lato abbiamo a disposizione su PUMA un database strutturato e ben
predisposto per l'implementazione di piattaforme di calcolo su Concerto, dall'al-
tro lato AdaMo garantisce una comoda organizzazione dei risultati della prova
in vari �le di testo separati. Molto spesso infatti è fondamentale poter accedere
facilmente ai dati raccolti per mezzo di software per la creazione di fogli di lavoro
come Microsoft Excel, che permette di implementare molto rapidamente dei cal-
coli sulle colonne che compongono il �le. Tuttavia nell'ottica di fruire di layout
di elaborazione pre-impostati e sviluppati di pari passo con l'algoritmo di test in
sala prova, è preferibile compattare i dati in una struttura più maneggevole per
la programmazione.
Per questo motivo siamo in de�nitiva interessati a trasformare la collezione di
�le di testo prodotti da AdaMo, nel corso dell'esecuzione di una prova, in un
unico �le, il più possibile simile al record ASAM ODS prodotto da PUMA nel
corso dell'esecuzione della stessa prova. A fare questo lavoro di raggruppamento
e creazione di un �le unico per il test result di AdaMo è il FileConverter, un
componente software realizzato appositamente per questo scopo, sviluppato nel
linguaggio di programmazione speci�co di Concerto [2], che integra anche uno
script ausiliario realizzato in linguaggio Python.
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Un elemento di notevole rilevanza per questo progetto, in particolare per i com-
ponenti architetturali descritti in questo paragrafo, è il Datasource di Concerto,
che consiste in un data provider de�nito dalle seguenti caratteristiche:

� un nome univoco a cui fare riferimento nella scrittura di codice relativo a
formule e script;

� un Alias di default, cioè il nome da associare ai �le di questo Datasource
una volta aperti, che presenta un su�sso indicante un indice progressivo
(per esempio se si sceglie ASCFILE, il primo �le aperto avrà Alias ASCFILE1,
il secondo ASCFILE2 e così via seguendo l'ordine di apertura);

� un formato di riferimento, che può essere associato a un tipo di server
(è l'esempio dei server ASAM ODS delle sale PUMA) o a un tipo di �le
accessibile da �lesystem;

� le regole di accesso al �le, cioè indirizzo e parametri di connessione in
caso di server (come quelli delle sale PUMA) o path di partenza nel caso
di �le accessibili da �lesystem locale o remoto;

� aree su �lesystem da cui attingere le formule da associare automatica-
mente ai �le del Datasource (sono naturalmente consentiti riferimenti sia a
�le di formule Concerto con estensione frm, sia �le di formule Python con
estensione py);

� regole di traduzione di nomi di chiavi e canali, tramite istruzioni di
mapping eventualmente importabili da �le chiamati Dictionary;

� de�nizione di script context che associano al Datasource una libreria di
script utilizzabili a più livelli.

Il Data Explorer è l'ambiente di Concerto che permette non solo di creare e
gestire i Datasource, ma soprattutto di utilizzarli per accedere ai dati. Inoltre è
possibile raggruppare diversi Datasource in un Data Environment, descritto
da un �le dxv. In�ne nel Work Environment in uso, cioè appunto l'ambiente
di lavoro attuale di Concerto, è possibile caricare più Data Environment per
accedere a tutti i Datasource che ciascuno di essi contiene. Per questo progetto è
stato creato appositamente un Work Environment, chiamato AITV, e sono stati
creati - all'interno di un Data Environment - diversi Datasource, che saranno
introdotti nei prossimi paragra�.
Nel prossimo paragrafo 3.2.1, sarà descritto nel dettaglio il funzionamento del
FileConverter mentre nel successivo paragrafo 3.2.2 sarà illustrato il metodo
di archiviazione centralizzato adoperato per convogliare tutti i dati ottenuti in
una struttura unica.
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Figura 3.7: Con�gurazione di un DataSource nel DataExplorer di Concerto.
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3.2.1 FileConverter

La collezione di �le di testo prodotti da AdaMo costituisce il punto di partenza
per la conversione, adoperata dal FileConverter, in un �le unico e facilmente
comparabile con i �le di PUMA. Per maggiore chiarezza, è a questo punto op-
portuno considerare come test result di AdaMo l'intera directory che ospita i
�le creati durante l'esecuzione del test. Il numero e i nomi di questi documenti
testuali variano in base alla tipologia di prova e�ettuata e sono sono determinati,
come descritto precedentemente, con una duplice prospettiva sull'implementazio-
ne sia del test in sala prova sia del layout di post-elaborazione.
Lo scopo di questo componente software è quindi e�ettuare una conversione della
folder di risultati di AdaMo in un �le ATF [14], per mezzo dei metodi messi a
disposizione dalla suite di scripting di Concerto [2]. L'analogia tra i �le testuali e
le chiavi di memorizzazione de�nita nell'implementazione del test sui due sistemi
d'automazione, viene dunque tradotta in una corrispondenza univoca peculiare
per ogni tipo di test. Da qui l'idea di trascrivere la lista di chiavi necessarie in un
�le di mapping, speci�co della prova, da passare come input al FileConverter,
in modo tale che possa conservare la �essibilità necessaria ad adattarsi ai diversi
scenari.
In generale è frequente che alcune necessità, speci�che dell'attività di ricerca
in corso, richiedano l'acquisizione di dati particolari che non rientrano in quelli
solitamente salvati dalla prova. Questo non comporta obbligatoriamente la crea-
zione di varianti "u�cializzate" dell'algoritmo di test e dei layout di elaborazione,
ma al contrario spesso si riconduce a richieste saltuarie per le quali è su�ciente
permettere agli application engineer di valutare tali dati acquisiti. Per queste
grandezze sono solitamente adoperate chiavi speci�che, da escludere quindi dal-
l'operazione di traduzione da �le di testo AdaMo a chiavi di memorizzazione
del �le ATF. In realtà accade molto più frequentemente che questi canali siano
inseriti nei recorder canonici del test, il che li rende disponibili anche in fase di
post-elaborazione, sebbene non siano dati adoperati dalle formule predisposte
per elaborare il test.
Per poter accedere alle funzionalità di scripting di Concerto è necessario disporre
della feature aggiuntiva di licenzaConcerto Application Development Tool-
box. Questa piattaforma di programmazione permette di implementare formule
(�le frm) complesse sui canali presenti nelle chiavi dei �le caricati e allo stesso
tempo permette di creare script (�le csf) per gestire l'intera applicazione, dai
Datasource alle �nestre del layout. Il linguaggio di programmazione Concerto è
molto simile a Visual Basic e include alcuni elementi di C, inoltre la versione in
uso include un supporto per formule e script realizzabili in linguaggio Python.
Nell'ambiente di programmazione di Concerto, ogni variabile, cioè ogni set di
dati manipolabile, è organizzato internamente come un Dataset, cioè una data
structure simile al tipo Variant di Visual Basic, ma più potente. Di conseguenza
a�erisce al tipo Dataset ogni variabile in formule e script, così come ogni canale
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X Y I
1 27,46 0
2 30,72 0
3 32,02 0
4 34,85 0
5 36,48 0
6 38,26 0

Tabella 3.2: Esempio di dataset proveniente da una chiave Logpoint-based.

(o quantity) appartenente a un �le accessibile nel Data Explorer, non appena è
caricato.
I Dataset possono consistere in uno o più punti, potendo quindi essere de�ni-
ti rispettivamente scalari o vettori. In particolare il compilatore delle formule
processa i dataset senza considerare di quanti punti siano composti e ciascuna
operazione applicata al dataset è automaticamente applicata a tutti i suoi pun-
ti. Questo approccio garantisce e�cienza e �uidità nella computazione, senza
incorrere in loop pesanti e dispendiosi per tempo e risorse. Va comunque posta
attenzione nell'utilizzo di più dataset con un diverso numero di punti: la somma
di dataset di dimensioni diverse non è consentita, ma vettori e scalari possono
comunque essere combinati. In particolare se si somma un dataset di dimensione
maggiore di 1 (vettore) e un dataset dotato di un solo punto (scalare), il valore
dello scalare è sommato a ciascun elemento del vettore.
Un dataset inoltre non consiste semplicemente in un array, ma dispone di tre
tracce (un esempio in tabella 3.2):

� x-trace, che nel caso di canali appartenenti a chiavi logpoint-based è un
array di numeri interi progressivi, nel caso di una chiave time-based è un
valore di tempo (in secondi o millisecondi); può tuttavia appartenere anche
a qualsiasi altro tipo, anche String;

� y-trace, che rappresenta il vero valore del canale e consiste in un array
di valori numerici o anche di tipo testuali (che chiaramente non possono
essere utilizzati per calcoli, ma solo per manipolazioni sul tipo String);

� marker trace, che contiene un array di indicatori di vario genere, i quali
possono ad esempio indicare se il corrispondente punto è valido o meno (nel
caso in cui in un dataset coinvolto in una formula o script ci sia un punto
invalido, l'interprete opererà comunque sul punto, ma il corrispondente
punto nel dataset risultante sarà marcato anch'esso come invalido).

Il FileConverter consiste essenzialmente nello script FileConverter.csf in lin-
guaggio Concerto, che richiama un piccolo script Python ausiliario per la gestione
delle intestazioni nei �le standard di AdaMo. La sua struttura, schematizzata in
�g. 3.8, è presentata di seguito.

53



Figura 3.8: Struttura del FileConverter.
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1. Innanzitutto è necessario ottenere il path della folder AdaMo su �-
lesystem locale o condiviso. I PC desktop che ospitano il client Windows
di AdaMo - così come i PC di PUMA - sono dotati di una scheda di rete
dedicata alla connessione alla LAN aziendale e questo garantisce di poter
accedere a tutti i test results delle sale prova. Inoltre sono disponibili risorse
di archiviazione condivise su cui sono solitamente caricati dati e documenti
perché siano fruibili da tutti gli utenti.
Questa porzione di codice, realizzata in linguaggio Concerto, adopera per la
selezione del path il metodo DirDialog della classe built-in Application,
che presenta molti metodi e attributi utili per l'interazione con l'utente e la
gestione dei vari ambienti di Concerto. In particolare il metodo utilizzato
permette la selezione di una folder per mezzo dell'apertura di una �nestra
di navigazione e ha la seguente sintassi:
DirDialog([InititalDir], [Caption])
i cui parametri sono così descrivibili:

� InititalDir (opzionale), di tipo String, è il path iniziale per la
�nestra di ricerca nel �lsystem;

� Caption (opzionale), di tipo String, è il titolo della �nestra visibile
sul top.

Il metodo restituisce in�ne un valore di tipo String, indicante il path sele-
zionato dall'utente dopo la navigazione.
Il codice implementato per questa fase è il seguente:

App = GetApplication()
\\É istanziato l'oggetto "App" della classe Application
SelectedDir = App.DirDialog(startPath, "Select AdaMo result
folder")
\\Nella variabile "SelectedDir" è salvato il path assoluto
\\della directory selezionata dall'utente

In merito alla variabile startPath, va fatta una precisazione sulle aree
di storage da cui attingere. La fase successiva eseguita dal FileConver-
ter consiste nell'apertura e caricamento in ambiente Concerto di tutti gli
ASCII �le, presenti nella folder selezionata, che facciano riferimento alla
lista di chiavi necessarie per l'elaborazione del test, riportata nel �le di
mapping. Potrebbe essere su�ciente utilizzare il path ottenuto dal metodo
DirDialog sopra descritto, ma questo comporterebbe che in fase di aper-
tura l'utente sia costretto a scegliere il formato di questi �le, lasciando di
fatto una possibilità d'errore. Per ovviare a quest'eventualità è stato crea-
to un apposito Datasource, chiamato AdaMo_Files, che associa ad un'area
del �lesystem di una risorsa di archiviazione condivisa, il formato ASCII
con valori delimitati da tabulazione tipico dei �le prodotti da AdaMo. In
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questo modo è possibile e�ettuare direttamente l'apertura evitando che l'u-
tente selezioni erroneamente un formato sbagliato. Di conseguenza il path
di partenza, assegnato come valore alla variabile startPath passata come
parametro InitialDir al metodo DirDialog, è un valore di tipo String
corrispondente alla locazione dell'area target del Datasource.
Si desume che le folder di test risults vanno posizionate dal �lesystem della
sala prova di provenienza a quello della risorsa di archiviazione condivisa
nella rete aziendale, perché sia disponibile per la conversione.

2. Lo step successivo consiste nella selezione del �le di mapping relativo
alla tipologia di prova eseguita. Tra i parametri salvati nella chiave V_IN c'è
sempre la quantity Test_Type che indica il tipo di prova eseguita, secon-
do una nomenclatura standard adottata per questo progetto. Per questa
ragione il �le relativo alla chiave V_IN è il primo ad essere aperto, già in
questa fase, per poter leggere il valore di Test_Type salvato. Tale stringa
è fondamentale per la selezione del �le corretto, il cui nome contiene per
l'appunto il titolo del tipo di test e�ettuato: ad esempio, per la prova di
Lambda Step a cui si riferisce il caso di studio approdondito nel capitolo
4, il valore scelto per la variabile Test_Type è "LStep" e di conseguenza il
�le di mapping corrispondente ha come nome LStep_Mapping.txt.
Precedentemente è stata illustrata la necessità di far riferimento al Data-
source de�nito per i �le nelle folder di AdaMo (AdaMo_Files). Per poter
sfruttarne le caratteristiche descritte, è necessario far riferimento al path
relativo della cartella selezionata dall'utente nella fase 1, rispetto alla di-
rectory target del Datasource. Per questo motivo la stringa restituita dal
metodo DirDialog è manipolata con la funzione built-in StrErase della
libreria String, che cancella porzioni di stringhe ed è così de�nita:
StrErase(str, [pos], [count])
i cui parametri sono così descrivibili:

� str, di tipo String, è la stringa da manipolare;

� pos (opzionale), di tipo Integer, è l'indice di partenza per la sub-
string da cancellare (se è omesso, è usato il valore di default 1);

� count (opzionale), di tipo Integer, è il numero di caratteri che com-
pone la sub-string da cancellare (se è omesso, sono cancellati tutti i
caratteri da pos �no alla �ne della stringa str).

La funzione restituisce in�ne la stringa risultante.
Nel nostro caso è stato necessario estrapolare dalla variabile SelectedDir
la porzione di path relativo a partire dalla directory di partenza del Data-
source, cioè il valore della variabile startPath. Il codice per la manipola-
zione della stringa è il seguente:

dataDir=StrErase(SelectedDir,1,StrLen(startPath))
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\\Nella variabile dataDir è salvato il path relativo

La funzione StrLen(str) restituisce la lunghezza (Integer) della strin-
ga str.
Per l'apertura del �le relativo alla chiave V_IN è necessario innanzitut-
to istanziare un oggetto della classe File adoperando il metodo SelFile
della libreria Script, così de�nito nel caso di selezione per mezzo di un
Datasource esistente:
SelFile("DataSource", "Filename")
oppure
SelFile("DataSource\Filename")
i cui parametri sono così descrivibili:

� DataSource, di tipo String, è il nome del Datasource di riferimento;

� Filename, di tipo String, è il path relativo del �le.

La funzione restituisce l'oggetto File corrispondente al �le selezionato.
Successivamente, per l'apertura e il caricamento in Concerto del �le, è
adoperato il metodo Open([Alias]) della classe File, che ha come unico
parametro (opzionale) una stringa che indica l'Alias desiderato da associare
al �le una volta aperto. Nel caso in cui il parametro è omesso, è utilizzato
l'Alias di default per il Datasource, dotato del su�sso indicante l'indice
progressivo. In�ne il metodo restituice un valore intero (0 o 1) che rappre-
senta in sostanza un �ag indicante la corretta apertura (1) o un errore (0).
Il codice per l'apertura del �le relativo alla chiave V_IN è il seguente:

a1=SelFile("AdaMo_Files"+dataDir+"\V_IN.ASCII")
\\"a1" è un oggetto della classe File
A1=a1.Open("V_IN")
\\L'Alias
selezionato è "V_IN".

\\"A1" è flag che indica l'esito dell'operazione di apertura.
Una volta aperto il �le V_IN.ASCII con Alias V_IN, sono automaticamente
disponibili tutti i canali in esso archiviati sotto la chiave D. Di conseguenza
è possibile assegnare alla variabile T_Type_ds il dataset corrispondente al
canale Test_Type in chiave D del �le con Alias V_IN, con la seguente sin-
tassi:
T_Type_ds = V_IN:D'Test_Type
che segue il costrutto tipico Alias:KEY'DATASET adoperato in linguaggio
Concerto per accedere ai canali.
In base a quanto speci�cato nei paragra� precedenti, il dataset risultante
- come l'intera chiave V_IN - potrebbe non essere dotato di un solo punto
ed è perciò necessario estrarre la stringa indicante il tipo di test da un solo
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punto (il primo) del dataset T_Type_ds con il metodo y[index] della clas-
se Dataset, che permette di ottenere o modi�care il valore corrispondente
all'indice index sulla y-trace del dataset:
T_Type = T_Type_ds.y[1]
In questo modo il valore y corrispondente all'indice 1 del dataset T_Type_ds
è assegnato alla variabile T_Type.
Successivamente è aperto il �le di mapping corrispondente alla tipologia di
prova eseguita, che è posizionato nella sub-folder lib della directory target
del Datasource AdaMo_Files, insieme a tutti quelli relativi agli altri test.
Le funzioni per la selezione e l'apertura del �le di mapping sono le stesse
già adoperate per V_IN.
Dal �le aperto sono in�ne estratti i due dataset Lkeys e Rkeys, che conten-
gono rispettivamente le chiavi Logpoint-based e quelle Time-based indicate
nel �le di mapping sotto i canali LogKeys e RegKeys. Dopo aver salvato
nelle due variabili le liste di chiavi di interesse, il �le di mapping è chiuso
con il metodo Close() della classe File.
Di seguito è riportato il codice implementato per questa fase:

a1=SelFile("AdaMo_Files"+dataDir+"\V_IN.ASCII")
A1=a1.Open("V_IN")
\\Apertura del file relativo alla chiave "V_IN"
T_Type_ds = V_IN:D'Test_Type
T_Type = T_Type_ds.y[1]
\\Salvata in "T_Type" la stringa indicante il tipo di prova
a2=SelFile("AdaMo_Files"+"\lib\"+T_Type+"_Mapping.txt")
A2=a2.Open("ASCFILE1")
\\Apertura del file di mapping
LKeys=ASCFILE1:D'LogKeys
RKeys=ASCFILE1:D'RegKeys
\\Salvataggio in "LKeys" e "RKeys" delle due liste di chiavi
a2.Close()
\\Chiusura del file di mapping.
\\L'Alias "ASCFILE1" torna disponibile.

In questa fase è inoltre estratto dal dataset TestBench del �le V_IN la
stringa indicante la sala prova in cui è stato e�ettuato il test. Questa in-
formazione è fondamentale per determinare il path di export del �le ATF
risultante dalla conversione, come sarà descritto nell'ultimo step. Tale
stringa è assegnata alla variabile TBench in maniera analoga a quanto fatto
per T_Type:
TBench_ds = V_IN:D'TestBench
TBench = TBench_ds.y[1]
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3. Prima di procedere all'apertura dei �le relativi alle chiavi indicate nelle va-
riabili LKeys e RKeys, è necessario rimuovere gli header tipici dei �le di
tipo time-based creati da ogni tipo di test eseguito sul sistema AdaMo. Nel
paragrafo 3.1.2 è stato speci�cato che i �le relativi a chiavi logpoint-based
di AdaMo sono prodotti dall'istruzione SNAPLOG e che non presentano alcun
header. Al contrario i �le legati a chiavi time-based sono frutto di acquisi-
zioni continue che trascrivono i dati sul �le di testo in codi�ca ASCII, che
costituisce l'output standard di AdaMo e che presenta un'utile intestazione
di 10 righe. In questo caso tuttavia i metadati contenuti nell'intestazione
possono essere trascurati, poiché non saranno adoperati da questo pun-
to in avanti nel nostro sistema. Inoltre per la corretta apertura di questi
�le in Concerto e per attingere ai dati sotto forma di chiavi time-based,
è opportuno rimuovere le 10 righe iniziali prima di lanciare le istruzioni
di apertura già viste in precedenza. Per e�ettuare questa operazione, che
si rende dunque necessaria esclusivamente per i �le indicati dalla variabi-
le RKeys, è stato adoperato uno script ausiliario realizzato in linguaggio
Python chiamato RegHandler. Per invocarne l'esecuzione, è stata utiliz-
zata la funzione built-in ExecutePythonScript(ScriptPath) della libreria
Script, che permette di eseguire uno script Python passando come para-
metro il suo path assoluto. Il �le RegHandler.py è stato posizionato nella
sub-folder lib della directory target del Datasource AdaMo_Files, come al-
tri script che saranno descritti nei prossimi paragra�. Di conseguenza è
stata adoperata la seguente sintassi per l'esecuzione del RegHandler:
ExecutePythonScript(startPath+"\lib\RegHandler.py")
adoperando anche in questo caso la variabile startPath.
Prima di procedere alla descrizione del codice Python realizzato e dei mo-
tivi per i quali è stato ritenuto opportuno avvalersi di questo linguaggio, è
bene fare una breve introduzione ad uno dei metodi più e�caci per condi-
videre variabili tra diversi contesti di Concerto.
Le variabili "ordinarie", utilizzate in formule e script Concerto, hanno am-
bito di visibilità - il cosiddetto scope - locale ed esistono solo nel periodo
d'esecuzione. Concerto mette a disposizione tuttavia anche delle variabili
speciali, le User Variable, che al contrario hanno scope globale e manten-
gono il loro contenuto durante la sessione di Concerto. Si possono de�nire
da un apposito menu e sono riportate all'interno del �le uservariables.ini,
hanno validità assoluta e prescindono quindi dal Work Environment corren-
te. Possono essere di tipo numerico o testuale e il loro nome generalmente
inizia con il carattere %. Si richiamano generalmente utilizzando diretta-
mente il loro nome, ma in realtà è possibile creare User Variable il cui
nome non inizia con il carattere % e in tal caso vanno adoperate le funzioni
GetUserVar and SetUserVar della libreria Auxiliary. In�ne è possibile
vincolare l'esistenza di una User Variable al Work Environment corrente
e per farlo è su�ciente utilizzare il pre�sso %CWF_ nel nome della variabi-
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le. Sono numerose le utilità di queste peculiari strutture dati ed è stata
in particolare sfruttata la loro caratteristica visibilità globale per passare
dei parametri tra i diversi script adoperati (soprattutto se realizzati in lin-
guaggi diversi), non solo nel caso del FileConverter che si sta analizzando
in questo paragrafo.
Tornando a porre l'attenzione sullo step di rimozione degli header dai �-
le time-based, il richiamo allo script Python è e�ettuato ciclicamente in
un loop che scorre ogni elemento del dataset RKeys. Per ciascuno di essi,
il RegHandler seleziona il �le corrispondente ed elimina l'header. Si de-
duce facilmente che risulta necessario passare due parametri dallo script
Concerto allo script Python: la directory selezionata dall'utente e il nome
del �le attuale, nel corpo del loop. Per fare questo ci si è avvalsi di due
User Variable, entrambe legate al Work Environment attualmente in uso
(AITV):

� %CWF_AdaMoFilePath, contenente il path assoluto della folder selezio-
nata dall'utente;

� %CWF_AdaMoFile, contenente il nome del �le da manipolare.

Si tenga a mente però che in linguaggio Python non è possibile inserire
nelle stringhe direttamente il carattere "\" poiché è un carattere speciale4,
ma va preceduto sempre da un altro "\". Per questo motivo la stringa con-
tenuta nella variabile SelectedDir dev'essere modi�cata di conseguenza,
per mezzo della function StrReplaceAll(str, String1, String2), che
sostituisce String2 alla sub-string String1 di str. Il codice per il corretto
assegnamento del path modi�cato a %CWF_AdaMoFilePath è il seguente:

dataDirPy = StrReplaceAll(dataDir,"\","\\")
origPath=%CWF_AdaMoFilePath
%CWF_AdaMoFilePath=%CWF_AdaMoFilePath+dataDirPy

Il valore iniziale della variabile %CWF_AdaMoFilePath è il path della di-
rectory target del Datasource AdaMo_Files, già adattato al linguaggio Py-
thon raddoppiando ogni carattere \. Perciò è su�ciente concatenare il
path relativo contenuto in dataDirPy. Ad ogni modo il path originale è
stato salvato nella variabile origPath in modo tale che al termine del-
lo script FileConverter.csf possa essere reimpostata la User Variable
%CWF_AdaMoFilePath per mezzo dell'istruzione:
%CWF_AdaMoFilePath=origPath
Il codice che e�ettua il loop per la rimozione degli header è dunque il se-
guente:

4Il backslash è adoperato nelle stringhe Python per i caratteri di escape, come \n (new line)
o \t (tab), ma anche per altri caratteri speciali.
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for i=1 to nPoints(RKeys)
if StrUpper(RKeys.y[i]) <> "NULL" then

%CWF_AdaMoFile = RKeys.y[i]
ExecutePythonScript(startPath+"\lib RegHandler.py")

endif
next i

Si noti che per costruire il loop sono stati adoperati il for statement di
Concerto e la funzione nPoints(DS) della libreria Auxiliary, che restitui-
sce il numero di punti nel dataset DS. Inoltre le istruzioni di assegnamento
alla User Variable e di esecuzione dello script Python sono inglobate in un
if statement, che permette di e�ettuare tali operazioni solo nel caso in cui il
valore RKeys.y[i] sia diverso da "NULL" (il confronto è reso case insensi-
tive dalla funzione StrUpper(str) che rende maiuscolo ogni carattere della
stringa argomento str). Questo controllo è reso necessario dall'eventualità
di avere un numero diverso di chiavi logpoint-based rispetto a quelle time-
based. In tal caso è assicurato una dimensione uguale per i due dataset,
per mezzo di un'operazione di padding che aggiunge la stringa "null" (case
insensitive) nei punti sprovvisti di un valore e�ettivo.
Possiamo ora analizzare nel dettaglio lo script RegHandler.py. Uno dei
grandi vantaggi che l'utilizzo di Python garantisce è sicuramente la possi-
bilità di importare moduli che implementano strutture e funzioni utili agli
scopi del codice che si vuole realizzare. I moduli disponibili sono molto
numerosi e facilmente installabili con il sistema di gestione dei pacchetti
standard pip5. In particolare per questo script è stato necessario importare
i seguenti moduli:

� csv6, che implementa classi utili per leggere e scrivere dati tabellari
in formato CSV;

� os7, che mette a disposizione metodi portabili per utilizzare funziona-
lità dipendenti dal sistema operativo.

� concerto, fornito da AVL come parte integrante del supporto allo
scripting Python in Concerto, estende molte delle funzionalità base
del linguaggio Concerto.

Le istruzioni di import utilizzate sono le seguenti:
import concerto as conc
import csv
import os

5urlhttps://docs.Python.org/3/installing/index.html
6https://docs.Python.org/3/library/csv.html
7https://docs.Python.org/3/library/os.html
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Nello speci�co in RegHandler.py è stata implementata la funzione Remove-
Header(f_path) che apre il �le indicato dal parametro f_path e lo copia
riga per riga - saltando solo le prime 10 - su un �le temporaneo, che in�ne
è sostituito al �le originale. Gli step eseguiti sono i seguenti:

(a) il percorso in f_path è copiato in f_in, mentre ad f_out è assegnato
il percorso del �le temporaneo utilizzando il metodo replace della
stringa f_in;

(b) sono aperti i �le indicati da f_in e f_out (quest'ultimo è contestual-
mente creato, dato che non esisteva precedentemente) e sono istanziati
i due oggetti corrispondenti inp e out;

(c) sono istanziati gli oggetti writer e reader del modulo csv con i quali
è realizzato un loop che scorre le righe del �le inp e, fatta eccezione
per le prime 10, le trascrive sul �le out;

(d) i �le inp e out sono chiusi con il loro relativo metodo close();

(e) il �le indicato dal path f_in è rimosso con la funzione remove() del
modulo os e in�ne il �le f_out è rinominato con il nome originale
contenuto in f_in, per mezzo della funzione rename(f_out,f_in)
del modulo os.

Il codice della funzione è di seguito riportato:

def RemoveHeader(f_path):
f_in=f_path
f_out=f_in.replace(".ASCII","_temp.ASCII")
with open(f_in, 'rt') as inp, open(f_out, 'wt', newline=�)

as out:
writer = csv.writer(out)
for i,row in enumerate(csv.reader(inp)):

if i>=10:
writer.writerow(row)

inp.close()
out.close()
os.remove(f_in)
os.rename(f_out,f_in)
return 1

In�ne la funzione appena de�nita è invocata passando come parametro il
path del �le da manipolare. A tale scopo sono adoperate le due User Varia-
ble %CWF_AdaMoFilePath e %CWF_AdaMoFile, richiamate con la struttura
variables del modulo concerto. Quest'ultima consiste in un dictionary
contenente le coppie nome-valore di tutte le User Variable attualmente pre-
senti nella sessione di Concerto, che sono così leggibili e modi�cabili anche
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in ambiente Python.
Il codice per l'ottenimento del path del �le da modi�care e il seguente ri-
chiamo della funzione RemoveHeader(f_path) è il seguente:

base_path = conc.variables["%CWF_AdaMoFilePath"]
file_name = conc.variables["%CWF_AdaMoFile"]
file_path = base_path + "\\" + file_name + ".ASCII"
RemoveHeader(file_path)
Anche in questo caso è stato adoperato il doppio carattere \ nella costru-
zione della stringa indicante il path del �le, dal momento che nel linguaggio
Python \ è un carattere speciale delle stringhe.

4. Analogamente a quanto fatto per il �le V_IN, sono ora aperti tutti i �le
i cui nomi sono riportati nelle variabili LKeys e RKeys, attingendo dalla
directory selezionata dall'utente (SelectedDir). Anche in questo caso è
dunque stata utilizzata la funzione SelFile per individuare ciascun �le at-
traverso il Datasource AdaMo_Files e ottenerne il corrispondente oggetto
della classe File; successivamente è stato adoperato il metodo Open per
l'apertura del �le. Queste operazioni sono state eseguite all'interno di due
cicli for, che scorrono i componenti dei dataset LKeys e RKeys:

for i=1 to nPoints(LKeys)
if StrUpper(LKeys.y[i]) <> "NULL" then

a2=SelFile("AdaMo_Files"+dataDir+"\"+LKeys.y[i]+
".ASCII")

A2=a2.Open(LKeys.y[i])
endif

next i
for i=1 to nPoints(RKeys)

if StrUpper(RKeys.y[i]) <> "NULL" then
a2=SelFile("AdaMo_Files"+dataDir+"\"+RKeys.y[i]+

".ASCII")
A2=a2.Open(RKeys.y[i])

endif
next i

Analizzando il corpo del primo loop, si nota che è stato utilizzato anche
in questo caso il metodo y[index] sul dataset LKeys per ottenere il valo-
re corrispondente all'indice attuale e posizionarlo nella stringa indicante il
path relativo del �le attuale, a partire dalla directory target del Datasour-
ce AdaMo_Files. L'Alias associato è il nome stesso del �le e della relativa
chiave. Il secondo loop replica pedissequamente la struttura del primo, ma
sul dataset RKeys.
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Il risultato è che adesso tutti i �le indicati nel �le di mapping sono stati
aperti ed è possibile accedervi senza possibilità d'errore, dal momento che
sono stati adoperati Alias inequivocabilmente uguali al nome del �le di
provenienza e della chiave sotto cui i dati contenuti saranno copiati.

5. A questo punto è necessario creare un data �le virtuale a cui fare a�eri-
re le chiavi di memorizzazione tratte dai �le aperti allo step precedente. A
tale scopo, Concerto mette a disposizione i ComposerFile, aree di memo-
ria gestite dal software, accessibili esattamente come un �le di dati caricato
da un Datasource. Come normali �le di dati, possiedono un Alias e sono
anch'essi composti da canali raggruppati in chiavi, che però è possibile mo-
di�care: possono essere create o rimosse anche intere chiavi di un Composer
File. Generalmente sono adoperate le Composer window per creare canali
e popolarli con valori inseriti manualmente o per trascinare dataset e chiavi
da altri test. Per creare e gestire questi �le di dati virtuali in ambiente di
scripting, è invece disponibile la classe Composer.
Inoltre, un'altra classe indispensabile per la procedura di creazione del �le
Composer e per altre operazioni illustrate nei prossimi step, èAddressing,
che permette di istanziare riferimenti a unità di dati come test, measure-
ment ID o dataset. Il metodo di questa classe utilizzato per de�nire un ri-
ferimento è set e ha i seguenti parametri facoltativi, da inserire o omettere
a seconda di come si vuole utilizzare l'oggetto:

� Alias (String): l'Alias di un test generalmente già aperto;

� GroupName (String): nome di un Datasource;

� TestName (String): nome di un test, utilizzabile con GroupName per
associare il riferimento ad un test non aperto;

� ConcertoFileRef (oggetto della classe File): utilizzato nel caso in
cui si disponga di un �le object ottenuto per esempio dalla funzione
SelFile già introdotta;

� DataKeyName (String): nome di una chiave di memorizzazione;

� MeasId (Integer): measurement ID di una chiave;

� ChannelName (String): nome di un canale, appartentente ad una
chiave di un �le;

� DataSetRef (String): nome di un dataset;

� ChannelString (String): stringa che indica un canale o dataset e
segue il classico costrutto Alias:KEY'DATASET.

Per creare dunque il �le Composer è innanzitutto necessario istanziare un
oggetto della classe Composer con la seguente sintassi:
Dim cmp As Composer
Dopodiché è stato utilizzato il suo metodo CreateConcertoFile(Addr,...)
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che necessita del parametro obbligatorio Addr - un oggetto della classe
Addressing - e accetta il parametro facoltativo LayoutEmbedded, un �ag
che permette di legare l'esistenza del Composer �le al layout di Concerto
attualmente aperto (il valore di default è 0). L'oggetto Addr passato a
questo metodo deve presentare necessariamente i due parametri TestName
e Alias precedentemente de�niti.
Alla luce di quanto descritto, è stato istanziato un oggetto della classe
Addressing e gli sono state associati, tramite il metodo set, i due para-
metri necessari alla creazione del composer. In�ne è stato utilizzato il me-
todo CreateConcertoFile dell'oggetto cmp, che restituisce l'oggetto della
classe File relativo al nuovo Composer �le. Il codice è di seguito riportato:

Dim cmp As Composer
Dim newFileAddr As Addressing
newFileAddr.Set("TestName:", StrReplaceAll(dataDir,"\",""),
"Alias:", "PUMA1")
fo = cmp.CreateConcertoFile(newFileAddr, "LayoutEmbedded:",0)

Come si nota nella seconda riga, come parametro TestName è stato uti-
lizzato il nome della directory selezionata dall'utente, ottenuto rimuovendo
il carattere \ dalla stringa salvata nella variabile dataDir. In�ne l'Alias
adoperato per il Composer �le è PUMA1 per analogia con la struttura del
test risult tipico di PUMA, che si intende ricreare.

6. Una volta che tutti i �le sono stati aperti, il loro contenuto diviene ac-
cessibile ed è dunque possibile copiarlo nel Composer �le. In base al
modo in cui sono stati costruiti e manipolati i �le prima dell'apertura, i
dati che essi contengono saranno disponibili automaticamente sotto una
chiave precisa, a seconda del tipo:

� i �le relativi a misure stazionarie (chiavi logpoint-based), provenienti
cioè da istruzioni SNAPLOG, presentano i loro dati sotto la chiave D,
canonicamente adottata per acquisizioni puntuali;

� i �le prodotti da misure continue (chiavi time-based), manipolati con
lo script RegHandler.py nello step 3 per eliminare l'intestazione, pre-
sentano i dati sotto la chiave TM, canonicamente adottata per acqui-
sizioni in base tempo.

Inoltre nei nostri test le chiavi di tipo time-based, a di�erenza di quel-
le logpoint-based, sono composte spesso di più measurement ID, ciascuno
associato ad uno dei �le indicati nella variabile RKeys. Per distinguerli
si aggiunge al loro nome un indice progressivo: ad esempio la chiave REG
prodotta da un test PUMA, coposta da due measurement ID, sarà analo-
gamente ricreata a partire da due �le ASCII prodotti da AdaMo, chiamati
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REG1 e REG2.
La classe Addressing, introdotta nell'analisi dello step precedente, torna
utile anche in questo caso, per il processo di migrazione delle chiavi D e
TM dei vari �le verso il Composer cmp. In particolare sono necessari due
oggetti di questa classe, uno (src) per la chiave sorgente da copiare e uno
(trgt) per la chiave target in cui incollare i dati:

Dim src As Addressing
Dim trgt As Addressing

Più nello speci�co, analizzando il caso della chiave V_IN, è stato adope-
rato su questi due oggetti il metodo set con i seguenti parametri:

src.Set("Alias:", "V_IN", "DataKeyName:", "D")
trgt.Set("Alias:", "PUMA1", "DataKeyName:", "V_IN", "MeasId:",
1)

Si noti che per la chiave sorgente è stato adoperato l'Alias V_IN, che iden-
ti�ca il �le V_IN, e il nome della chiave D, visto che contiene dati di tipo
logpoint-based; mentre per la chiave target è indicato l'Alias PUMA1 che
identi�ca il Composer cmp, il nome della chiave desiderata V_IN e il mea-
surement ID 1, che è l'unico sempre presente nelle nostre chiavi logpoint-
based.
Prima di copiare la chiave identi�cata dall'oggetto src su quella identi�ca-
ta da trgt, è necessario che quest'ultima sia creata. A tale scopo è stato
utilizzato il metodo AddNewDataKey(Addr,...) dell'oggetto cmp, appar-
tenente alla classe Composer, con questa sintassi:
cmp.AddNewDataKey(trgt,"BaseType:","LOGPOINT","Homogeneous:",
1,"Resolution:",1)
in cui sono stati adoperati i seguenti argomenti, tralasciandone altri opzio-
nali:

� trgt è l'oggetto che identi�ca la chiave da creare nel Composer cmp,
che nel nostro caso è il target della migrazione;

� BaseType (opzionale) è una stringa che può avere come valori accet-
tabili LOGPOINT o TIMEBASED e indica il tipo di chiave da creare;

� Homogeneous (opzionale) è un �ag che determina se la chiave da creare
possa accettare solo dati omogenei; questo signi�ca che tutti i suoi
canali dovranno avere stessa risoluzione e numero di punti;

� Resolution (opzionale) è un �ag che indica la risoluzione dei dati per
la chiave da creare;
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In�ne il metodo CopyDataKey(Addr, ...) dell'oggetto cmp permette di
copiare la chiave identi�cata da src in quella identi�cata da trgt, seguen-
do la seguente sintassi:
cmp.CopyDataKey(trgt,"SrcAddrRef:",src,"BaseType:",
"LOGPOINT","Homogeneous:",1,"TakeOverBaseValues:",1,
"Resolution:",1)
Il primo oggetto della classe Addressing passato è trgt, che identi�ca la
chiave target in cui incollare i dati, mentre il riferimento alla chiave sorgente
da copiare è e�ettuato per mezzo del parametro obbligatorio SrcAddrRef,
a cui è associato l'oggetto src. I successivi parametri, opzionali, sono tutti
analoghi a quelli utilizzati per il metodo AddNewDataKey, fatta eccezione
per TakeOverBaseValues, cioè un �ag che impedisce di adattare la x-trace
dei canali copiati a quella degli eventuali canali già esistenti nella chiave.
In sintesi il codice per creare la nuova chiave nel Composer e per copiarci
dentro i dati provenienti dal �le ASCII è il seguente:

src.Set("Alias:", "V_IN", "DataKeyName:", "D")
trgt.Set("Alias:", "PUMA1", "DataKeyName:", "V_IN", "MeasId:",
1)
cmp.AddNewDataKey(trgt,"BaseType:","LOGPOINT","Homogeneous:",
1,"Resolution:", 1)
cmp.CopyDataKey(trgt,"SrcAddrRef:",src,"BaseType:",
"LOGPOINT","Homogeneous:",1,"TakeOverBaseValues:",1,
"Resolution:",1)
a1.Close()

Si noti che nell'ultima riga il �le relativo a V_IN è chiuso con il metodo
Close() dell'oggetto a1 della classe File, che lo identi�ca.
La stessa procedura è ripetuta per tutte le chiavi indicate nella variabile
LKeys - anch'esse a�erenti alla tipologia logpoint-based - in un ciclo for:

for i=1 to nPoints(LKeys)
if StrUpper(LKeys.y[i]) <> "NULL" then

src.Set("Alias:",LKeys.y[i],"DataKeyName:","D")
trgt.Set("Alias:","PUMA1","DataKeyName:",LKeys.y[i],

"MeasId:", 1)
cmp.AddNewDataKey(trgt,"BaseType:","LOGPOINT",

"Homogeneous:", 1, "Resolution:", 1)
cmp.CopyDataKey(trgt,"SrcAddrRef:",src,

"BaseType:","LOGPOINT","Homogeneous:",1,"TakeOverBaseValues:",
1,"Resolution:",1)

af=SelFile(LKeys.y[i])
af.Close()
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endif
next i

L'Alias adoperato per src, così come il nome della chiave per trgt, è
in questo caso la stringa indicata da LKeys.y[i]. Si noti inoltre che per
istanziare l'oggetto della classe File, corrispondente al �le appena copiato,
è utilizzata la funzione SelFile a cui è passato come parametro il relativo
Alias indicato da LKeys.y[i]. Sull'oggetto af così ottenuto, è in�ne invo-
cato il metodo Close() per la chiusura del �le.
Leggermente diverso invece è il corpo dell'altro ciclo for necessario a copia-
re tutte le chiavi riportate in RKeys:

for i=1 to nPoints(RKeys)
if StrUpper(RKeys.y[i]) <> "NULL" then

last_char=StrErase(RKeys.y[i], 1,
StrLen(RKeys.y[i])-1)

KName=RKeys.y[i]
index=1
if Not(isAlpha(last_char)) then

index=CReal(last_char)
KName=StrErase(RKeys.y[i],

StrLen(RKeys.y[i]), 1)
endif
src.Set("Alias:", RKeys.y[i], "DataKeyName:", "TM")
trgt.Set("Alias:", "PUMA1", "DataKeyName:", KName,

"MeasId:", index)
cmp.AddNewDataKey(trgt,"BaseType:","TIMEBASED",

"Homogeneous:",1,
"Resolution:",0.1)

cmp.CopyDataKey(trgt, "SrcAddrRef:", src,
"BaseType:", "TIMEBASED","Homogeneous:",1,
"TakeOverBaseValues:",0,"Resolution:",0.1)

af=SelFile(RKeys.y[i])
af.Close()

endif
next i

Per ogni iterazione è innanzitutto necessario discriminare se l'attuale �-
le corrisponde ad un measurement ID o se combacia con l'intera chiave
e per determinarlo è analizzato l'ultimo carattere del nome indicato da
RKeys.y[i], estratto con la funzione StrErase. Tale sub-string (di un
solo elemento), salvata in last_char, è passata come parametro alla fun-
zione isAlpha della libreria String per determinare se corrisponde ad un
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carattere dell'alfabeto, per poi negare la condizione così ottenuta con la
funzione Not della stessa libreria. Nel caso dunque in cui la condizione
sia True, si deduce che si tratta del su�sso numerico progressivo tipico
dei �le corrispondenti a un measurement ID di una chiave time-based e di
conseguenza si salva in index l'indice del measurement ID corrispondente,
mentre a KName è assegnato il vero nome della chiave, sottraendo l'ultimo
carattere alla Stringa RKeys.y[i], con la funzione StrErase. Nel caso in
cui la condizione sia False, si deduce che il �le indicato da RKeys.y[i]
corrisponde ad una intera chiave time-based, perciò sono mantenuti i valori
di inizializzazione per le variabili index (1) e KName (RKeys.y[i]).
I valori di queste due variabili sono utilizzati in�ne nella procedura di crea-
zione e copia della chiave, che risulta del resto quasi identica a quella rea-
lizzata per le chiavi logpoint-based indicate da RKeys. Le uniche di�erenze
sono le seguenti:

� nel richiamo del metodo set sull'oggetto src, è stato indicato "TM"
come nome della chiave, in quanto riferita ad un �le di natura time-
based;

� nel richiamo del metodo set sull'oggetto trgt, è stato indicato KName
come nome della chiave e index come numero del measurement ID;

� nel richiamo dei metodi AddNewDataKey e CopyDataKey sull'oggetto
cmp, è stato indicato TIMEBASED come valore del parametro BaseType.

7. In�ne il �le Composer, costruito negli step precedenti, può essere
esportato in formato ATF per mezzo del metodo Export della classe
File. Naturalmente è necessario prima istanziare un �le object corrispon-
dente al Composer identi�cato da cmp, che invece è un oggetto della classe
Composer. Per fare questo è nuovamente adoperata la funzione SelFile a
cui è passato l'Alias PUMA1 relativo al Composer:
f_cmp=SelFile("PUMA1")
Su questo oggetto è in�ne richiamato il metodo Export, che richiede co-
me unico parametro una stringa indicante il percorso assoluto del �le da
generare, inclusa l'estensione. I vari formati disponibili sono i seguenti:

� ATF (ASAM Transport File)

� ATFX (ASAM Transport File XML)

� MF4 (MDF4 File Format)

� XLSX (MS Excel File)

� MCF (PUMA Recorder File)

� CTF (CONCERTO Transport File)

Tuttavia, come già anticipato precedentemente e come sarà meglio appro-
fondito nel prossimo paragrafo, il formato a cui siamo interessati è ATF. Il
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path assoluto da passare come parametro al metodo Export consiste nella
stessa posizione nel �lesystem della risorsa di rete, indicata dall'utente allo
step 1, da cui sono stati aperti i �le ASCII. Questo path è costruito con le
variabili SelectedDir e dataDir:
f_cmp.Export(SelectedDir+StrReplaceAll(dataDir,"\", "")
+".atf", 0)
Si noti che il metodo Export richiede un secondo parametro, withFormula-
Results, che permette di includere nell'export eventuali formule attual-
mente associate al �le, il che non rispecchia il nostro caso. La stessa istru-
zione è eseguita nuovamente su un path diverso, che corrisponde alla sub-
folder dedicata alla sala prova in cui è stato eseguito il test, nella directory
target del Datasource AdaMo_Files. La stringa indicante il nome della sa-
la è stato assegnato alla variabile TBench nello step 2 ed è concatenata a
startPath per realizzare il costrutto che segue:
f_cmp.Export(startPath+"\"+TBench+"\"
+StrReplaceAll(dataDir, "\", "")+".atf", 0)
Il motivo di questa ridondanza è chiarito nel prossimo paragrafo. A questo
punto è possibile chiudere il �le Composer con lo statement:
f_cmp.Close()
In�ne, prima di concludere l'esecuzione dello script FileConverter.csf, è
necessario ripristinare la User Variable %CWF_AdaMoFilePath con il valore
inizialmente salvato in origPath, come anticipato nella descrizione dello
step 3:
%CWF_AdaMoFilePath=origPath

Per rendere l'applicazione FileConverter.csf eseguibile anche da utenti meno
esperti o che non dispongono del path e�ettivo dello script, è opportuno regi-
strarlo tra i job che Concerto mette a disposizione. Si tratta di estensioni del
software base, che i programmatori possono de�nire come script csf, integrabili
per mezzo di una registrazione nel �le di con�gurazione concerto.ini. Successiva-
mente all'inserimento dello script nella corrispondente entry del �le concerto.ini,
all'avvio di Concerto sarà visibile nel tab Calculations\Jobs e dunque esegui-
bile. Il titolo del job corrispondente sarà uguale al nome del �le csf, a meno che
non sia adoperata nel corrispondente script la keyword Description per indica-
re la stringa che dovrà apparire come nome del job. Per questo motivo è stato
inserito come prima riga del FileConverter.csf il seguente statement, secondo
il corretto costrutto:
Description: AITV File Conversion
Di conseguenza lo script realizzato sarà accessibile dal tab Jobs, come illustrato
in �g 3.9.
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Figura 3.9: Esecuzione del job FileConverter.

3.2.2 Database centralizzato

Il processo di conversione appena descritto è completato dall'esportazione del
�le Composer che è stato creato. Sono dunque generati due �le ATF, uno po-
sizionato nella stessa cartella che costituisce il test result di AdaMo selezionato
dall'utente per la conversione e che contiente i �le ASCII d'origine; l'altra istru-
zione di Export è e�ettuata su un path �sso, corrispondente alla sub-folder
dedicata alla sala prova in cui è stato eseguito il test, nella directory target
del Datasource AdaMo_Files, identi�cata dalla variabile startPath nel codice
del FileConverter. Tale directory, posizionata nel �lesystem della risorsa di ar-
chiviazione condivisa nella LAN aziendale, costituisce il punto di partenza per la
selezione delle cartelle di risultati da convertire, navigando in AdaMo_Files dal
Data Explorer di Concerto. Nella stessa directory sono inoltre posizionate tante
sub-folder quante sono le sale prova AdaMo, nelle quali sono automatica-
mente caricati gli ATF generati, al termine dell'esecuzione del FileConverter,
come è stato descritto.
Va così delineandosi la struttura di un'area di archiviazione centralizzata, che
convoglia nella risorsa di rete condivisa tutti �le di risultati delle sale prova
AdaMo. D'altro canto è comunque garantita una portabilità dell'ATF prodotto,
grazie all'export supplementare e�ettuato nella cartella di risultati selezionata
dall'utente. Il fatto che la directory contenuta in startPath sia il punto di par-
tenza per la navigazione in AdaMo_Files deriva naturalmente dalla volontà di
raccogliere gli stessi test result testuali - originali delle sale AdaMo - nell'area
condivisa, ma non implica necessariamente che gli operatori di sala prova o gli
application engineer siano costretti a caricarli nelle sub-folder predisposte per
ogni sala prova. Di conseguenza è plausibile che le directory selezionate dall'u-
tente siano posizionate in percorsi del tutto scorrelati (ma comunque vincolati
al punto di partenza di startPath) e che l'utente abbia interesse a disporre del-
l'ATF generato anche in quel path.
Una parte del Database centralizzato consiste dunque di quattro percorsi di
rete - tanti quante sono le sale AdaMo - ciascuno dei quali è accessibile da un
Datasource che associa a tale path il formato ATF, assegnando come Alias di
default RESULT (�g. 3.10). Le quattro sale prova in questione si chiamano CM2,
CM3, CM4 e CM5. A completamento di questa struttura, è necessario de�nire
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Figura 3.10: De�nizione dei DataSource corrispondenti alle quattro sale prova
AdaMo.

due Datasource per le rimanenti sale prova PUMA (CM6 e CM7), i cui test
archiviati sono tuttavia già accessibili attraverso la LAN aziendale. La piatta-
forma Santorin di AVL è dotata infatti di un server che permette di accedere al
database ASAM ODS della sala prova PUMA, per mezzo di Datasource de�niti
su Concerto (�g 3.11), per i quali vanno de�niti i seguenti parametri:

� Server Name, il nome o l'indirizzo del computer che ospita il database e
il server ASAM-compliant;

� Santorin Registry/RPC Number (RPC Interface), a cui va assegna-
to uno dei Server Name proposti nel menu drop-down o, in alternativa,
un RPC number fornito dal server (solitamente un valore a nove cifre
decimali);

� Version, la versione dell'ASAM server a cui collegarsi;

� Additional Parameters, per direttive di accesso al database (ad esempio
l'inserimento di credenziali).

Si noti inoltre che anche per questi due Datasource è stato impostato di default
l'Alias RESULT, per rendere l'elaborazione del test del tutto avulsa da formato
e sala prova d'origine. Si può asserire dunque che il Database centralizza-
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Figura 3.11: De�nizione dei DataSource corrispondenti alle due sale prova
PUMA.

to sia una collezione di Datasource opportunamente de�niti, piuttosto che una
reale struttura che raccoglie i test result di tutte le sale prova. Infatti, sebbe-
ne non esista realmente un database unico - fatta eccezione per l'area dedicata
alle quattro sale prova AdaMo - è stato tuttavia creato su Concerto un Data
Environment chiamato AITV, che contiene i 6 Datasource de�niti precedente-
mente (�g. 3.12). Grazie a questo stratagemma è comunque garantito l'accesso
da tutti gli ambienti di Concerto ai dati delle sei sale prova, come porzioni di un
Database centralizzato. Si noti che nel Data Environment AITV è presente
anche il Datasource AdaMo_Files adoperato dal FileConverter per accedere alle
directory di risultati da convertire.
In �g. 3.13 è in�ne proposto un semplice schema che sintetizza la struttura
appena descritta del database centralizzato.

3.3 Post-Elaborazione

Grazie al FileConverter e alle tecniche di archiviazione impiegate, il formato d'o-
rigine dei dati diviene a questo punto del tutto inin�uente ed è possibile accedere
ai dati raccolti da ogni sala prova per mezzo dei sei Datasource de�niti nel Da-
ta Environment AITV. Inoltre per ciascuno di essi è stato impostato di default
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Figura 3.12: Data Environment AITV per l'accesso al database centralizzato
delle sei sale prova.

l'Alias RESULT, come descritto nel paragrafo 3.2.2, in modo tale da rendere i lay-
out di post-elaborazione totalmente neutrali rispetto al formato e alla sala prova
d'origine. Tutti i Datasource divengono così data provider equivalenti sotto ogni
aspetto.
In questo nodo dell'architettura, dedicato alla post-elaborazione, sono adoperati
dei layout Concerto (�le cly), che permettono di raccogliere le diverse �nestre
realizzate per la presentazione gra�ca dei dati. Sono diverse le tipologie di win-
dow inseribili nel layout, caratterizzate da vari oggetti, di cui si propongono
alcuni esempi:

� Diagram, utilizzato per la visualizzazione gra�ca dei dati per mezzo di
sub-objects di diversa natura, di cui sono proposti alcuni esempi:

� line curve, che consistono basicamente di linee spezzate su un piano
cartesiano le cui ordinate sono i valori di un dataset - cioè la sua
y-trace - mentre l'asse delle ascisse può essere l'x-trace dello stesso
dataset, o anche la y-trace di un altro dataset;

� bar curve, cioè istogrammi con riferimenti analoghi alle line curve,
ma con valori rappresentati da colonne (o bars);

� contour map, cioè gra�ci tridimensionali in formato z=f(x,y), che
consistono in isolinee sul piano x/y, le quali raggruppano punti8 a
quota uguale;

8Si tratta di valori non misurati, ma interpolati tridimensionalmente da funzioni spline
cubiche, comparabili a mappe o linee contour [2].
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Figura 3.13: Struttura del Database centralizzato.
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� table, orizzontali o verticali, usate per visualizzare dati in formato
alfanumerico.

� Report, che può consistere di liste di dati, form, tabelle e semplice testo;

� Dialog, cioè una �nestra d'interazione con l'utente, che può presentare
diversi oggetti - inseribili anche nelle �nestre di tipo Diagram -, come action
button, list box, check box, e altri ancora.

� Composer, già introdotta nel paragrafo 3.2.1, è una �nestra per la crea-
zione e manipolazione manuale di chiavi e dataset di un �le Composer.

Naturalmente i dati associati alle �nestre possono essere dataset misurati, cioè
provenienti da un �le di dati caricato, oppure formule (�le frm) che applicano
ai dataset misurati calcoli implementati nel linguaggio Concerto - introdotto nei
paragra� precedenti - con il quale si realizzano anche gli script csf, dai quali dif-
feriscono per la necessaria presenza della keyword return che indica la variabile
da restituire. Si tenga presente che nella logica di funzionamento del linguaggio
di Concerto ogni variabile è un dataset e di conseguenza ogni formula è a tutti gli
e�etti un dataset, che si va ad aggiungere a quelli misurati. L'utilizzo di formule
è quindi un modo per aggiungere canali virtuali ad un �le di dati e ciascuna
di esse può accedere ad un numero illimitato di dataset - naturalmente anche
altre formule - per il calcolo, ma restituisce un solo dataset come risultato. In
linguaggio Concerto, il riferimento ad altri dataset è e�ettuato per mezzo del
costrutto Alias:KEY'DATASET.
La metodologia più robusta per la de�nizione e l'utilizzo di formule consiste
nell'assegnarle ad un Datasource, in modo tale che siano associate automatica-
mente ad ogni �le da esso raggiungibile. L'associazione è e�ettuata per mezzo
della dichiarazione di percorsi relativi a directory, nelle quali sono raccolti i �le
frm che implementano le formule. Ad ogni percorso è assegnata una chiave che
sarà automaticamente aggiunta ai �le raggiungibili dal Datasource e che contiene
tutte i dataset-formule contenuti nella relativa directory. Per i sei Datasource
CM2, CM3, CM4, CM5, CM6 e CM7, sono state con�gurate tutte le chiavi - e i relativi
path - necessarie per avere a disposizione le formule utili a realizzare i layout di
post-elaborazione delle prove.
Analogamente agli script, possono essere implementate anche formule in linguag-
gio Python, che permettono di mettere tutte le potenzialità di questo linguaggio
a servizio degli utilizzi previsti per le classiche formule Concerto. A tal proposi-
to è opportuno speci�care che Concerto integra di base un Python Environment
basato su una versione 3.6.4 e aggiunge alle feature built-in i seguenti due moduli:

� NumPy9, molto utile per il calcolo scienti�co con Python, ma può anche
essere usato per strutture dati multidimensionali de�ninendo all'occorrenza
tipi di dato arbitrari;

9numpy.org
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� Pandas10, molto utile per la manipolazione e l'analisi dei dati, per mezzo
di strutture dati quali Series (monodimensionale) e DataFrame (bidimen-
sionale).

Com'è stato anticipato nel paragrafo 3.2.1, a proposito dello script ausiliario
RegHandler.py a supporto del FileConverter, è comunque possibile estende-
re l'ambiente Python di base e integrare altri package. Inoltre AVL mette a
disposizione il modulo concerto per la gestione degli elementi base della pro-
grammazione Concerto, anche in ambiente Python. In particolare per la gestione
dei dataset è possibile utilizzare due metodi:

� concerto.ds, che restituisce un dataset come un array di NumPy, accet-
tando come parametri le coordinate del canale;

� concerto.ds, che restituisce uno o più dataset come un DataFrame di
Pandas, accettando dunque più coordinate di canali come parametri.

In�ne vale la pena includere in questa descrizione le Macro (�le mac), un utile
strumento di calcolo ausiliario a quelli già citati. Sebbene condividano la stessa
sintassi delle formule (fatta eccezione per la keyword arg() con cui accettano
parametri), le Macro non generano canali virtuali, ma sono più propriamente
funzioni o sub-routine de�nibili dall'utente e integrabili nel codice di formule e
script o utilizzabili per le trasformazioni degli assi x e y negli oggetti Diagram.
Dal momento che, diversamente dalle formule, non generano dataset virtuali che
vanno ad aggiungersi a quelli misurati, le Macro non possono essere associate ai
Datasource. Resta tuttavia un importante strumento per il riutilizzo di codice
in più contesti.
Per ogni test implementato sui sistemi d'automazione di sala prova, è dunque
realizzato il relativo layout Concerto per mezzo di tutti questi strumenti. É pos-
sibile in questo modo estrarre tutti i risultati �nali delle prove e de�nire una serie
di �nestre del layout che andranno a comporre il report del test e�ettuato.
Di particolare interesse, per l'analisi che si sta conducendo sul progetto realizza-
to, è soprattutto la gestione dei risultati �nali calcolati dalle maschere di
post-elaborazione, che a questo punto possono essere oggetto di validazione
mediante AITV - che sarà analizzato nel paragrafo 3.4 - o possono essere raccol-
ti e aggiunti al training set corrispondente alla prova e�ettuata, contribuendo
alla precisione di future validazioni. Entrambe le operazioni corrispondono al-
l'esecuzione di un job associato, a seguito del caricamento del �le di risultati
d'interesse e dell'applicazione del layout, il che costituisce l'unico requisito in
funzione del quale i due task sono parimenti richiamabili dall'utente. Infatti,
come illustrato nel capitolo 2, post-elaborazione e validazione costituiscono due
elementi dell'architettura paralleli e connessi, posizionati sullo stesso livello: seb-
bene la logica di utilizzo di questi strumenti preveda che i risultati siano validati

10https://pandas.pydata.org
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prima di utilizzarli per aggiornare il training set, l'utente gode della libertà di
scegliere se e quale job eseguire, a seconda dello step che sta e�ettuando nell'at-
tività di ricerca. Si ricorda infatti che il test è dapprima eseguito in sala prova,
successivamente il �le di risultati - eventualmente convertito dal FileConverter
- è caricato in Concerto attraverso il corretto Datasource perché sia applicato il
layout di elaborazione. I risultati così ottenuti sono validati mediante AITV e
in�ne, se ritenuti a�dabili, sono aggiunti al training set insieme ai parametri di
input contenuti in V_IN.
Nel prossimo paragrafo è analizzato il Parser, il componente software - regi-
strato come job Concerto - che è in grado di estrarre i valori rilevanti de�nibili
come risultati �nali della prova, per caricarli nel �le corrispondente al training
set corretto inseme ai corrispondenti parametri di V_IN.

3.3.1 Parser

Molti degli elementi base della programmazione Concerto/Python sono stati in-
trodotti nei paragra� precedenti, in particolar modo in merito al FileConverter.
Buona parte di essi saranno dunque dati per scontati in questa sezione, nell'ana-
lisi del Parser. Nelle prossime pagine ci sono comunque molteplici riferimenti
al paragrafo 3.2.1, per meglio spiegare analogie e di�erenze con il codice già il-
lustrato in quella sezione.
Per e�ettuare l'operazione di raccolta dei valori di input e output della prova
e di scrittura degli stessi nel �le di training set, è stato realizzato uno script
interamente in linguaggio Python, naturalmente eseguito in ambiente Concerto.
Nel caso del FileConverter.csf è stato ritenuto opportuno integrare i due dif-
ferenti linguaggi disponibli, in virtù delle utili caratteristiche di entrambi. Nello
speci�co è stato necessario realizzare in linguaggio Concerto la vera e propria
struttura del FileConverter, soprattutto per via della semplice gestione dei �le
Composer, impossibile da ottenere lavorando esclusivamente in linguaggio Py-
thon. É stata tuttavia sfruttata la possibilità di integrare il modulo csv per la
procedura di rimozione delle intestazioni dei �le time-based di AdaMo, e�ettuata
dallo script RegHandler.py. In questo caso, invece, è stato possibile realizzare
il Parser interamente in linguaggio Python, mantenendo una compattezza mag-
giore del codice e della struttura senza il vincolo di sincronizzare l'esecuzione di
due script paralleli e di gestire lo scambio di parametri.
Per registrare il Parser come job Concerto, è stato tuttavia necessario realizzare
il piccolo script Parser.csf, che semplicemente lancia il Parser.py per mezzo
della funzione ExecutePythonScript, già adoperata nel caso del FileConverter.
L'intero codice Concerto del Parser.csf è riportato di seguito:

Description: AITV Parser
startPath = %CWF_AdaMoFilePath
startPath = StrReplaceAll(startPath,"\\","\")

78



Figura 3.14: Esecuzione del job Parser.

Figura 3.15: Visualizzazione del �le di risultati aperto.

ExecutePythonScript(startPath + "lib\Parser.py")

Analizzando brevemente le precedenti righe, la prima istruzione determina il
nome del job Concerto (com'è riportato in �gura 3.14), mentre le due righe suc-
cessive hanno lo scopo di determinare il path della directory - anche target del
Datasource AdaMo_Files - nella quale è presente la sub-folder lib contenente
script e �le di testo accessori come i �le di mapping delle chiavi. Il percorso
di questa directory è memorizzato come valore di default della User Variable
%CWF_AdaMoFilePath, adoperata per il passaggio di tale informazione dall'am-
bito del FileConverter.csf al RegHandler.py. Si noti tuttavia che in questa
stringa ogni carattere \ è raddoppiato, dal momento che si tratta di un caratte-
re speciale delle stringhe in Python. Di conseguenza è necessario "riconvertire"
il path perché sia utilizzabile in linguaggio Concerto, per mezzo della funzio-
ne StrReplaceAll con cui è stato rimpiazzato ogni \\ con un solo \. In�ne è
eseguito lo script Parser.py, posizionato nella sub-folder lib, per mezzo della
funzione ExecutePythonScript. Si pone ora l'attenzione sul Parser.py, di cui
verrà di seguito analizzata la struttura. Si tenga a mente che l'esecuzione del
job Parser avviene appena dopo la conclusione della post-elaborazione per mezzo
del layout e delle formule implementate, ma contestualmente ad essa, senza cioè
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chiudere la sessione di Concerto o e�ettuare altre operazioni. Più precisamente,
è fondamentale che al momento dell'esecuzione del Parser sia aperto il �le di ri-
sultati della prova elaborata (�g. 3.15), rigorosamente per mezzo del Datasource
corrispondente alla sala prova di provenienza. In questo modo è assicurato che
siano correttamente assegnate tutte le formule necessarie a determinare i risul-
tati �nali del test, che il Parser deve inserire nel Training Set. Inoltre questo
garantisce che sia correttamente assegnato l'Alias RESULT1, fondamentale per
l'esecuzione del codice analizzato di seguito.
Innanzitutto è stato necessario importare i quattro moduli con i seguenti state-
ment:

import concerto as conc
import numpy as np
import pandas as pd
import ctypes as ct

In particolare:

� il modulo concerto è necessario per la gestione dei dataset del �le di
risultati con Alias RESULT1 e di altri �le ausiliari;

� il modulo numpy è mandatorio per la gestione dei dataset ottenuti per mezzo
del metodo concerto.ds, che restituisce infatti il dataset argomento come
un array di NumPy;

� il modulo pandas è mandatorio per la gestione dei dataset ottenuti per
mezzo del metodo concerto.dsframe, che restituisce infatti i dataset ar-
gomento come un DataFrame di Pandas; inoltre sono state adoperate altre
strutture di Pandas per la gestione e l'aggiornamento del training set;

� il modulo ctypes è stato integrato semplicemente per la visualizzazione di
un popup a �ne script, che ne indica il corretto completamento.

Con riferimento alla �g. 3.16, si può suddividere la struttura del Parser.py nei
seguenti cinque punti.

1. All'inizio dello script, dopo aver importato i moduli necessari, la prima
operazione consiste nell'aprire il �le di training set corrispondente alla
tipologia di prova a cui a�erisce il �le di risultati con Alias RESULT1. Tutti
i training set, così come tutti i �le di mapping e gli script, sono contenuti
nella già citata sub-folder lib. Non è necessario caricare il training set co-
me un �le Concerto, poiché non siamo interessati a leggerne il contenuto,
ma è più opportuno aprirlo come DataFrame del modulo Pandas. Per-
tanto non è adoperato il Datasource AdaMo_Files, che di base punta alla
directory del �lesystem della risorsa d'archiviazione condivisa, nella quale

80



Figura 3.16: Struttura del Parser.
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è posizionata la sub-folder lib, ma è necessario ricorrere nuovamente al-
la User Variable %CWF_AdaMoFilePath, questa volta sfruttandone il valore
originale che compone il path con il doppio backslash \\. É dunque prima
di tutto istanziata la variabile startPath in questo modo:
startPath = conc.variables["%CWF_AdaMoFilePath"]
Per ottenere il valore di %CWF_AdaMoFilePath è adoperata la struttura
variables del modulo concerto.
Successivamente è necessario ottenere il tipo di prova eseguita, riportato
nel dataset Test_Type appartenente alla chiave V_IN del test RESULT1, che
viene assegnato alla variabile test_type. In questo caso è utilizzato il me-
todo ds che restituisce come array NumPy il dataset indicato dal classico
costrutto Alias:KEY'DATASET. Di questo array è estratto il primo elemen-
to, corrispondente all'indice 0, a di�erenza di quanto avviene in linguaggio
Concerto nel quale i dataset - così come altre strutture - hanno come indi-
ce di partenza 1. Al netto di questa di�erenza di convenzione, il codice di
seguito riportato è analogo a quello adoperato nel FileConverter.csf per
lo stesso scopo, che era stato realizzato in linguaggio Concerto mediante il
metodo y[index].
test_type = conc.ds("RESULT1:V_IN'Test_Type")[0]
Le due stringhe startPath e test_type sono dunque combinate per de-
terminare il percorso del �le di training set in questo modo:
training_set_path=startPath+"lib\\"+test_type+
"_TrainingSet.txt"
Come si può evincere, anche il �le di training set ha nel nome la stringa
indicante il tipo di prova, analogamente al �le di mapping delle chiavi.
Questo path è in�ne utilizzato per caricare il training set come DataFrame
per mezzo del metodo read_csv del modulo pandas, al quale in questo
caso sono passati come argomenti solo il percorso del �le, assegnato alla
variabile training_set_path, e il separatore adoperato nella divisione del-
le colonne, cioè "\t".
training_set = pd.read_csv(training_set_path, sep="\t")
In realtà sono molto più ampie le potenzialità di questo metodo, che per-
mette di �ltrare i dati acquisiti dal �le csv letto, ad esempio eliminando ri-
ghe e colonne o e�ettuando automaticamente parsing di alcuni formati nel-
le stringhe dei singoli elementi. Anche le utilità della struttura DataFrame
sono svariate, ma nel nostro caso speci�co è particolarmente funzionale la
sua suddivisione in righe e colonne accessibili per nome. In questo modo
è possibile, come sarà illustrato nel punto 5, aggiungere nuove entry del
DataFrame - per mezzo del metodo append - creandole come dictionary,
una struttura dati tipica di Python che consiste in una collezione di dati
non ordinata, modi�cabile e indicizzata.
In conclusione, il codice che rappresenta la prima fase d'esecuzione del Par-
ser è il seguente:
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startPath = conc.variables["%CWF_AdaMoFilePath"]
test_type = conc.ds("RESULT1:V_IN'Test_Type")[0]
training_set_path=startPath+"lib\\"+test_type+
"_TrainingSet.txt"
training_set = pd.read_csv(training_set_path, sep="\t")

2. In merito al FileConverter, per ottenere la lista delle chiavi da mappare
nel nuovo �le composer è stato utilizzato un �le testuale di mapping, nel
quale erano riportati i nomi delle chiavi logpoint-based e di quelle time-
based. Analogamente, il Parser si avvale di due altri �le che contengono
la lista di canali rispettivamente di input e output della prova,
ovvero l'insieme di parametri iniziali del test (salvati in V_IN) e quello dei
risultati �nali (calcolati dalla maschera di post-elaborazione). Anche questi
�le, distintivi di ogni prova, sono posizionati nella cartella lib e anche nel
loro nome è presente la stringa indicante il tipo di prova, precedentemente
assegnato alla variabile test_type.
Diversamente da quanto detto a proposito del training set, è opportuno
aprire questi due �le con la metodologia classica di Concerto e avvalendo-
si del Datasource AdaMo_Files. In questo modo sono entrambi caricati e
rendono disponibili i due importanti dataset contenenti i nomi dei canali
di input e output.
Per aprire dunque i due �le è adoperato il metodo select_file del sub-
module data, appartenente al modulo concerto, il quale restituisce un �le
object in maniera del tutto analoga alla funzione SelFile usata nel codice
Concerto del FileConverter. Anche in questo caso, l'argomento da passare
a select_file è il percorso relativo del �le da selezionare, de�nito a par-
tire dal Datasource di riferimento:

inp_file=conc.data.select_file("AdaMo_Files" + "\\lib\\"
+ test_type + "_Inputs.txt")
out_file=conc.data.select_file("AdaMo_Files" + "\\lib\\"
+ test_type + "_Outputs.txt")

Gli oggetti FileObject restituiti da select_file, in questo caso chiamati
inp_file e out_file, hanno metodi e attributi molto simili alla classe
File del linguaggio Concerto. Per aprire i due �le è infatti invocato il
metodo open, a cui è passato come argomento l'Alias da utilizzare nel ca-
ricamento:

inp_file.open("INPUTS")
out_file.open("OUTPUTS")
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Si chiarisce tuttavia che ci dev'essere una certa coerenza tra il contenuto di
questi due �le e la struttura del training set: quest'ultimo deve contenere
tante colonne quanti sono i canali di input e output indicati nei �le, ripor-
tando esattamente gli stessi nomi, naturalmente a meno della chiave di cui
fanno parte. Non è comunque fondamentale che sia osservato un ordine
preciso nella successione delle colonne, dato che l'accesso a ciascuna di esse
è sempre e�ettuato mediante il nome del dataset corrispondente.

3. Il contenuto dei �le caricati nello step precedente, si riduce dunque sempli-
cemente a un solo dataset per ciascuno, Inputs e Outputs. In questa fase
si procede ad assegnare il valore di questi due canali alle variabili
inp e out. Analogamente a quanto visto per il FileConverter, per cui si è
evidenziato che i �le di tipo logpoint-based aperti mediante il Datasource
AdaMo_Files presentano la sola chiave D una volta caricati, anche il cari-
camento di questi due �le produce lo stesso risultato, in quanto strutturati
in maniera analoga. Per questo motivo le istruzioni per ottenere i data-
set di nostro interesse dai due �le, per mezzo del metodo ds del modulo
concerto, sono le seguenti:

inp=conc.ds("INPUTS:D'Inputs")
out=conc.ds("OUTPUTS:D'Outputs")

Si noti che sono stati adoperati i due Alias dichiarati precedentemente,
che permettono di riferirsi correttamente ai due �le.
Una volta assegnato il contenuto dei due dataset alle variabili inp e out,
che sono dunque strutturate come array del modulo NumPy, è possibile
chiudere i due �le per mezzo del metodo close dei due �le object istanziati:

inp_file.close()
out_file.close()

Si chiarisce in�ne che il signi�cato dei termini "input" e "output", usati
per indicare rispettivamente i parametri di input memorizzati nella chiave
V_IN durante il test e i risultati �nali ottenuti dalla post-elaborazione, si
riferisce al ruolo che questi parametri rivestono nella predizione performata
da AITV, che sarà introdotta nel prossimo paragrafo.

4. Come anticipato al punto 1, a rendere particolarmente funzionale la strut-
tura dati DataFrame di Pandas per il processo di aggiornamento del training
set, è soprattutto la possibilità di e�ettuare riferimenti per nome alle co-
lonne, il che garantisce in questo caso di poter sfruttare nel metodo append
- che sarà utilizzato nel prossimo step - la struttura dati dictionary per
la costruzione di una nuova entry. In questa fase è creato un dictionary
per gli input e uno per gli output, che sono successivamente com-
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binati in un solo dictionary corrispondente alla nuova entry del
training set.
Come precedentemente accennato, la peculiarità di questi costrutti di Py-
thon consiste nell'associazione chiave-valore che caratterizza ogni elemento.
Possono essere de�niti esplicitando direttamente alcuni elementi, mediante
le parentesi gra�e: ad esempio lo statement dict0 = {"el1": 1, "el2":
2} crea il dictionary dict0 dotato di due elementi, di cui il primo è identi-
�cato dalla stringa "el1" e ha valore 1, mentre il secondo è "el2" di valore
2. Nel nostro caso tuttavia ciascun dictionary è popolato mediante un for
loop, che scorre gli elementi del dataset contenente la lista di canali di input
o output, perciò è più opportuno l'utilizzo del costruttore dict(), con il
quale è realizzata un'inizializzazione del dictionary senza dichiarazione di
elementi:

in_dict=dict()
out_dict=dict()

L'inserimento di nuovi elementi in un dictionary invece può essere im-
plementato con un semplice costrutto che esempli�cato dallo statement
dict0["el3"]=3, che aggiunge al dictionary dict0 un nuovo elemento la
cui chiave è la stringa "el3", a cui è assegnato il valore 3.
Prima di analizzare la struttura dei due loop che popolano i dizionari
in_dict e out_dict, è importante ricordare che all'interno della stessa
prova possono essere raccolti più campioni della chiave V_IN, per altret-
tanti punti nei dataset dei valori �nali calcolati dalla post-elaborazione.
Si consideri ad esempio il caso di studio del Lambda Step analizzato nel
capitolo 4, si tratta di un tipo di prova che ripete la stessa procedura su
più punti operativi (determinati da un valore di Giri e uno di Coppia),
per ciascuno dei quali è raccolto un nuovo campione per ogni canale del-
la chiave V_IN ed è calcolato un valore risultate di Oxygen Storage. Per
questo motivo la procedura di creazione di una nuova entry per il training
set dev'essere e�ettuata per ogni punto della chiave V_IN. Si deduce quindi
che a tale scopo è realizzato un for loop, il cui numero di iterazioni è deter-
minato dalla dimensione di un qualsiasi dataset appartenente a V_IN, che
sarà identica alla dimensione dei dataset relativi ai valori �nali, in virtù
di una corretta de�nizione delle formule e in generale della maschera di
post-elaborazione. É dunque assegnata alla variabile chsize la dimensio-
ne del dataset RESULT1:V_IN'Test_Type, già adoperato in precedenza per
ottenere la stringa indicante il tipo di prova, che sicuramente sarà presente
nella chiave V_IN. Tra i di�erenti metodi volti ad ottenere la dimensione
di un dataset, si è preferito l'utilizzo del metodo dsinfo del modulo con-
certo, che restituisce un dictionary contenente tutte le proprietà (nome,
descrizione, unità di misura, dimensione, tipo, etc.) del dataset passato
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come parametro per mezzo del costrutto tipico Alias:KEY'DATASET. In
particolare siamo interessati all'elemento che indica la dimensione, perciò
l'istruzione implementata è la seguente:
chsize=conc.dsinfo("RESULT1:V_IN'Test_Type")["size"]
A questo punto è possibile de�nire il for loop che itera su tutti gli elementi
memorizzati in V_IN, mediante la funzione built-in range, che restituisce
una sequenza di numeri che di default parte da 0 e incrementa di 1 (ar-
gomenti opzionali), ma termina al numero speci�cato come come unico
parametro obbligatorio. Il for statement utilizzato è dunque il seguente:
for i in range(chsize):
Il corpo di questo loop è di seguito analizzato:

� Innanzitutto è realizzato un ciclo for con il quale è popolato in_dict,
assegnando alla variabile x il valore dell'elemento corrente dell'array
inp:

for x in inp:
in_dict[x]=conc.ds("RESULT1:V_IN'"+x)[0]

Per ogni iterazione è dunque aggiunto a in_dict un nuovo elemento la
cui chiave è la stringa attualmente contenuta in x e il cui valore è da-
to dall'elemento attuale (determinato dall'indice i del for più esterno)
dell'array NumPy restituito dal metodo ds, a cui è passata la stringa
che segue il solito costrutto Alias:KEY'DATASET, dove il DATASET è in
questo caso la stringa x.
Si speci�ca che gli elementi dell'array inp, che riporta il contenuto del
relativo �le, sono stringhe corrispondenti ai nomi dei dataset riportati
nella chiave V_IN.

� Successivamente è implementato il ciclo che popola out_dict. Con-
trariamente a quanto visto per in, gli elementi dell'array out sono
stringhe che indicano anche la chiave di provenienza del dataset
rappresentante un risultato della prova (tipicamente una formula. Per
questa ragione, per derminare l'identi�cativo del nuovo elemento è uti-
lizzato il metodo split(') per dividere la stringa y, che si presenta
nella forma KEY'DATASET, in modo da ottenere una list11, di cui il
secondo elemento (indice 1) è il nome del dataset. Questa di�erenza
nella nomenclatura dei canali in out, comporta anche una variazione
dell'argomento del metodo ds, dal momento che la variabile y contiene
anche il nome della chiave. Il codice realizzato è di seguito riportato:

11Si tratta di un altro data collection type di Python, che rappresenta una successione di
elementi ordinata e modi�cabile e permette membri duplicati. Altri data collection type sono
il già citato dictionary, il set (ordinato e non modi�cabile, permette duplicati) e le tuple

(non ordinato e non indicizzato, non permette duplicati).
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for y in out:
out_dict[y.split("'")[1]]=conc.ds("RESULT1:"+y)[i]

� Ottenuti i due dictionary in_dict e out_dict, vanno ora uniti per
formare il nuovo entry_dict. A tale scopo in realtà si rivelano e�-
caci più tecniche. Una prima ipotesi potrebbe consistere nell'utilizzo
del metodo update di uno dei due dictionary - ad esempio in_dict -,
a cui è passato come argomento l'altro dictionary - out_dict. Que-
st'operazione modi�cherebbe però la struttura dell'oggetto in_dict,
compromettendo l'iterazione successiva del loop su tutti i campioni
della chiave V_IN e complicando l'implementazione. Per questo mo-
tivo si è preferito adoperare l'opertore **kwargs, che generalmente
permette di passare ad una funzione un numero variabile di argomen-
ti de�niti come coppie chiave-valore. L'applicazione di quest'opera-
tore ad un dictionary ha dunque l'e�etto di espanderne il contenuto
deserializzandolo in una collezione di coppie chiave-valore. Di conse-
guenza la creazione del nuovo dictionary entry_dict, consiste in una
semplice de�nizione mediante il contenuto deserializzato di in_dict
e out_dict:
entry_dict={**in_dict,**out_dict}

� La nuova entry, creata nello step precedente, è dunque aggiunta al Da-
taFrame training_set mediante il metodo append, al quale è passato
come argomento il dictionary entry_dict e il �ag ignore_index =
True. Va precisato che potrebbe essere passato a questo metodo an-
che un intero DataFrame e per questo motivo il �ag ignore_index
permette di ignorare gli indici (in un DataFrame gli indici sono i valori
che identi�cano le righe) corrispondenti alle nuove righe da aggiunge-
re. L'istruzione adoperata è la seguente:
training_set=training_set.append(entry_dict, ignore_index
= True)

In�ne è di seguito riportato il codice complessivo per questa fase:

in_dict=dict()
out_dict=dict()
chsize=conc.dsinfo("RESULT1:V_IN'Test_Type")["size"]
for i in range(chsize):

for x in inp:
n_dict[x]=conc.ds("RESULT1:V_IN'"+x)[i]

for y in out:
out_dict[y.split("'")[1]]=conc.ds("RESULT1:"+y)[i]

entry_dict={**in_dict,**out_dict}
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training_set=training_set.append(entry_dict, ignore_index
= True)

5. Il DataFrame training_set, ottenuto nella fase 1 e aggiornato nella
precedente fase 4, è in�ne trascritto nel �le di riferimento, da cui
è stato letto. Per fare questo è utilizzato il metodo to_csv dell'ogget-
to training_set, a cui sono passati come argomenti il path del �le su
cui scrivere - nel nostro caso sovrascrivere - che è salvato nella variabile
training_set_path, il separatore delle colonne "\t" - cioè la tabulazione
come per il metodo di lettura - e il �ag index=False che indica di non inse-
rire il nome (l'indice) delle righe. Il �le di training set è infatti predisposto
in modo tale da avere nomi di colonne, ma non di righe. L'istruzione per
l'aggiornamento del training set è la seguente:
training_set.to_csv(training_set_path, sep="\t", index=False)
In�ne è mostrato all'utente un popup che segnala il completamento dell'e-
secuzione del parser, sfruttando il modulo ctypes importato come ct:
ct.windll.user32.MessageBoxW(0, "Training Set updated
successfully!",
"AITV Parser", 0)

3.4 Validazione dei risultati

Gli elementi architetturali realizzati che sono stati descritti �nora rappresenta-
no una solida struttura per le attività di ricerca in sala prova, poiché si basano
su un'implementazione del test realizzata in modo confrontabile nei due sistemi
d'automazione, su un sistema d'archiviazione dei risultati centralizzato e ca-
ratterizzato da una comune struttura dei dati, in�ne su una post-elaborazione
coerente con l'algoritmo di test e del tutto automation-neutral. A completamen-
to di questa architettura è posto AITV (Arti�cial Intelligence Test Validator),
uno strumento di validazione dei risultati ottenuti dal post-processing, mediante
tecniche di Intelligenza Arti�ciale.
L'utente, giunto al termine dell'elaborazione dei risultati, può dunque validarli
mediante l'esecuzione del job Concerto relativo ad AITV e successivamente inse-
rirli nel training set, insieme ai parametri preliminari, per mezzo del job Concerto
relativo al Parser. Mentre il secondo è stato descritto nel paragrafo precedente,
si procederà ora ad analizzare struttura e caratteristiche della validazione con
AITV.
Generalmente sono adoperate metodologie di validazione dei risultati basate su
calcoli che derivano da studi sui fenomeni �sici e chimici associati alle grandezze
risultanti da validare e con il supporto di AITV non si pretende assolutamente
di fare a meno di tali tecniche. La raccolta sistematica dei risultati dei test -
già validati - permette di avere dati su�cienti per e�ettuare una predizione di
un risultato, sulla base dei parametri di input memorizzati nella chiave V_IN. La
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scelta delle variabili in base alle quali e�ettuare la predizione è a�data all'utente,
ma una volta presentato l'esito di tale processo - il valore stimato in sé e la di�e-
renza rispetto al valore realmente calcolato - è possibile utilizzare nuovamente il
tool modi�cando le variabili di input e i parametri della predizione. L'obiettivo è
dunque fornire uno strumento �essibile e personalizzabile, a vantaggio di utenti
esperti e dotati delle competenze necessarie a determinare i migliori candidati
per costituire l'input della predizione e che, di conseguenza, saranno allo stesso
modo in grado di fare un uso e�cace dello strumento. Si può giungere quindi
a stabilire la validità di un risultato se si ottiene almeno una predizione vicina
al valore realmente restituito dai calcoli della post-elaborazione, ma se invece i
valori stimati da AITV si discostano molto da questi ultimi, si potrebbe sollevare
l'ipotesi di un errore nella catena di misura, attuazione e calcolo. Naturalmente
è necessario comprendere a pieno le modalità di parametrizzazione del modello
predittivo, che in�uenzano le prestazioni di AITV tanto quanto la selezione delle
feature di input più opportune. A tale scopo è dunque o�erta nel prossimo pa-
ragrafo 3.4.1 una panoramica della Regressione Lineare con il metodo del
Gradient Descent, cioè l'algoritmo di Machine Learning su cui si basa il
modello predittivo di AITV. L'implementazione vera e propria in un job Con-
certo che lo metta in pratica è invece descritta nel successivo paragrafo 3.4.2.
É bene sottolineare, in�ne, che uno dei risultati che ci si auspica per questo
progetto, è la scoperta in futuro dell'esistenza di correlazioni sottovalutate tra
alcune grandezze acquisite e i risultati delle prove, mediante il loro impiego per
la predizione.

3.4.1 Regressione Lineare con Gradient Descent

La disciplina delMachine Learning de�nisce numerose metodologie per la rea-
lizzazione di sistemi in grado di apprendere da un insieme di dati, che di�eriscono
tra loro principalmente per scopo e approccio. In particolare siamo interessati
alla creazione di un algoritmo in grado di trovare e stimare una relazione tra
due variabili, data una collezione di coppie di loro valori. Immaginando di avere
un sistema che produca una grandezza d'uscita y, data una grandezza d'ingresso
x, un insieme di combinazioni input-output ottenute dal sistema costituisce il
training set per il modello predittivo e ogni suo elemento è chiamato training
case. L'apprendimento su tale insieme ha lo scopo di determinare una funzione
ipotesi h(x), che possa rappresentare la relazione tra x e y e che sia dunque
in grado di stimare il valore di y, dato un nuovo valore di x. Questo meccani-
smo descrive per sommi capi il funzionamento dei sistemi di Machine Learning
appartenenti alla categoria del Supervised Learning, a cui a�eriscono le tec-
niche di Regressione Lineare e Regressione Logistica (o Classi�cazione).
Come suggeriscono i nomi, la di�erenza tra i due tipi di sistema consiste nella
di�erente natura della variabile di output da stimare, che nel caso della Regres-
sione Lineare è appunto una grandezza reale e dunque "lineare", mentre per la
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Regressione Logistica si tratta di una grandezza discreta e dunque una "classe".
Secondo un'altra classi�cazione accademica dei sistemi di Machine Learning, si
può dire che la Regressione Lineare e la Classi�cazione appartengono aiModelli
Discriminativi, che cercano la probabilità condizionata p(y|x), con x ingresso
e y uscita.
Nel merito degli obiettivi attuali di questo progetto, siamo in particolare inte-
ressati all'utilizzo della tecnica della Regressione Lineare, dal momento che
la quasi totalità dei classici risultati dei test è riconducibile a grandezze reali.
Ad ogni modo è comunque molto ampio l'insieme di elementi comuni anche alla
Classi�cazione e pertanto l'analisi che segue è in gran parte utile anche alla sua
comprensione. Peraltro tra le idee alla base di sviluppi futuri di questo siste-
ma, elencate nel capitolo 5, �gura anche la proposta di impiego delle tecniche
di Classi�cazione, tra le quali si contemplano anche Reti Neurali e Macchine a
Supporto Vettoriale.
Si speci�ca inoltre che l'integrazione di questo algoritmo di Intelligenza Arti�-
ciale non presuppone la creazione di un Machine Learning System completo, ma
sono state comunque adoperate diverse tecniche che rendono l'approccio il più
possibile approfondito e robusto. Per esempio non è attualmente opportuno ri-
correre alla tecnica di validazione del modello su un test set separato o mediante
la cross validazione sullo stesso training set, dal momento che i dati collezionati
per ciascuna prova non sempre sono in numero su�ciente per una suddivisione.
Anche questo aspetto sarà discusso nel capitolo 5.
Si concentra dunque il focus sulla Regressione Lineare, che sarà adoperata per
ottenere una predizione di un valore risultante del test da confrontare con il
risultato realmente calcolato. Per cominciare si consideri il caso di un sistema
caratterizzato da una sola variabile di input x e una d'uscita y. L'obiettivo con-
siste nella de�nizione di una funzione ipotesi hθ(x) che rappresenti la relazione
tra x e y come una retta così de�nita:

hθ(x) = θ0 + θ1x

dove θ0, detto bias rappresenta l'intercetta all'origine della retta e θ1 è il coe�-
ciente angolare; possiamo considerare i due parametri come elementi del vettore
colonna Θ. Un'espressione di hθ(x) più generale, che prevede l'utilizzo di n
variabili di input è invece la seguente:

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn

e in questo caso il vettore colonna Θ comprenderà tutti i relativi parametri θ0,
θ1, θ2, �no a θn.
Per determinare i valori ottimali dei θk, bisogna de�nire una funzione di costo
J(Θ) che fornisce un indice dell'errore relativo all'ipotesi (hθ) in funzione dei θk
attuali e dunque in un certo senso misura quanto la de�nizione di hθ si discosta
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da quella ottimale. Tra le diverse possibili espressioni di J(Θ), si utilizza la
seguente:

J(Θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2

dove:

� m è il numero di istanze del training set;

�
1

2m
è il fattore di normalizzazione (il 2 serve a sempli�care l'espressione

della derivata di J(Θ), che vedremo più avanti);

� (hθ(x
(i))−y(i)) è l'errore tra l'i-esimo valore stimato - a partire dall'i-esimo

valore di input x(i) - e l'i-esimo valore vero y(i) del training set.

Determinare la funzione hθ ottima signi�ca dunque trovare i θk che minimizzano
la funzione di costo J(Θ):

Θmin = argminΘ(J(Θ))

Naturalmente l'ideale sarebbe che la funzione J(Θ) sia convessa, in modo tale
che abbia un solo minimo globale in corrispondenza del quale si possa considerare
ottima la funzione hθ, ma in realtà questa circostanza è piuttosto rara. Per que-
sta ragione è necessario utilizzare l'algoritmo chiamato Gradient Descent, che
consiste nel muovere iterativamente i θk nello spazio di ricerca, incrementandoli
di una quantità che dipende dal gradiente ∇ della funzione costo. L'aggiorna-
mento dei θk termina idealmente quando si è raggiunto il minimo globale di J(Θ),
ma dato che potrebbe essere una condizione temporalmente dispendiosa e tal-
volta impossibile da ottenere, si poassono imporre quattro condizioni d'arresto
dell'algoritmo:

� Relative Tolerance: la di�erenza tra due gradienti consecutivi è sotto
una certa soglia;

� Absolute Tolerance: il valore di J(Θ) è sotto una certa soglia e assume
dunque un valore ritenuto su�ciente;

� Max Iterations: si raggiunge un numero massimo di iterazioni consentite;

� Gradient Norm Tolerance: la norma del gradiente è inferiore ad una
certa soglia.

Nel caso di AITV, si è scelto di utilizzare l'opzione di Max Iterations per
imporre l'interruzione dell'algoritmo, poiché le scelte da parte dell'utente per la
predizione, in termini di variabili di input e parametri, potrebbero fortemente
condizionare le prestazioni del Gradient Descent e la pur robusta piattaforma di
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calcolo di Concerto potrebbe non sostenere un numero eccessivo di iterazioni.
Come anticipato, l'incremento dei parametri θk dipende dal gradiente ∇ della
funzione costo e in particolare per ogni θk:

θnewk = θoldk − α
∂J(Θ)

∂θk

dove:

� α è il Learning Rate, che può assumere un valore compreso tra 0 e 1;

�
∂J(Θ)
∂θk

è la derivata parziale di J(Θ) rispetto a θk.

Il valore di α determina il "passo" del Gradient Descent, ovvero l'entità del movi-
mento dei θk ad ogni step. Un α troppo elevato porterebbe il sistema a divergere,
muovendo i θk via via di una quantità sempre più grande a causa del crescente
valore di ∂J(Θ)

∂θk
. D'altro canto però un α troppo piccolo renderebbe i movimenti

estremamente ridotti e di conseguenza prolungherebbe eccessivamente i tempi
di ricerca. La scelta del Learning Rate opportuno è dunque un requisito fonda-
mentale, insieme alla selezione del parametro di input opportuno, perché AITV
e�ettui una previsione ottimale.
Tralasciando tutti i calcoli necessari ad ottenerla, si riporta di seguito la ge-
nerica espressione della derivata di J(Θ), per il caso di Regressione Lineare
Multivariate, cioè basata su più di una variabile di input:

∂J(Θ)

∂θk
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
k

dove x(i)
k è il valore i-esimo della k-esima variabile di input.

Si speci�ca inoltre che l'aggiornamento dei θk può seguire due metodologie,
corrispondenti ad altrettante versioni del Gradient Descent:

� Batch, che aggiorna ogni θk sulla base di tutti i campioni del training set,
computazionalmente più lento ma in grado di assicurare la convergenza;

� Stocastico, che aggiorna ogni θk sulla base di un solo campione del training
set alla volta, computazionalmente più rapido ma senza garanzie di con-
vergenza (dato che i movimenti risultano più piccoli e non necessariamente
orientati verso il minimo della funzione J(Θ).

La versione adoperata per AITV è quella Batch, che utilizza ad ogni iterazione
tutti i campioni del training set per aggiornare ciascun θk. Ad ogni modo entram-
be le tipologie di Gradient Descent si basano su un'inizializzazione randomica dei
valori dei θk, dai quali ha inizio l'algoritmo di ricerca dell'ipotesi ottimale.
Le equazioni descritte possono essere trasformate in forma matriciale, ottenendo
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una rappresentazione più compatta. L'espressione in tale forma della funzione
costo per esempio è la seguente:

J(Θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 =

1

2m
(XΘ− Y )T (XΘ− Y )

Come vedremo nel prossimo paragrafo, il modulo Python NumPy mette a di-
sposizione diversi metodi grazie ai quali è possibile implementare molti calcoli in
questa forma.
Un passaggio fondamentale preliminare all'apprendimento del modello mediante
l'algoritmo Gradient Descent, è la normalizzazione delle variabili d'ingresso, cioè
la procedura detta Feature Scaling. Le diverse feature di input potrebbero
presentare range di valori molto diversi tra loro e di conseguenza i Learning Rate
ideali potrebbero variare di molto da variabile a variabile. Un metodo comune
per e�ettuare quest'operazione è laMin-Max Normalization, che forza i valo-
ri in un intervallo [a, b] scelto, esponendo però il modello al rischio di incontrare
al momento della predizione dei valori di input al di fuori di tale intervallo. In
questo progetto invece è stata adoperata la Z-Score Normalization, molto più
robusta anche in merito alla presenza di outlier, cioè i rari valori molto distan-
ti dalla media. Essa produce una distribuzione a media nulla per mezzo della
sottrazione del valor medio e dividendo per la deviazione standard, senza quindi
aver bisogno di de�nire un intervallo obiettivo. Ciascun valore x di ogni variabile
di input va quindi trasformato in un nuovo valore z così de�nito:

z =
(x− µ)

σ

dove:

� µ è la media dei valori della variabile x;

� σ è la deviazione standard dei valori della variabile x.

In�ne è possibile misurare le prestazioni del modello di Regressione Lineare per
mezzo di 3 metriche, che permettono di valutare la risposta del sistema su un set
di m campioni:

� Mean Absolute Error (MAE), che è tendenzialmente più robusto del-
l'indicatore RMSE riguardo alla presenza di eventuali outlier :

MAE =
1

m

m∑
i=1

|h(x(i))− y(i)|

Questo valore indica dunque quanto è mediamente distante il valore predet-
to su ogni training case da quello reale della variabile di output, in termini
assoluti.
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� Mean Squared Error (MSE), che ha il vantaggio di penalizzare errori
molto grandi ma è più sensibile rispetto al MAE agli outlier :

MSE =
1

m

m∑
i=1

(h(x(i))− y(i))2

Questo indice eleva al quadrato l'errore calcolato per ogni training set e
per questo motivo conferisce un peso maggiore a di�erenze molto grandi in
valore assoluto.

� Root Mean Squared Error (RMSE), che ha un signi�cato analogo al
MSE, ma ha un andamento diverso per modelli basati su gradiente:

RMSE =

√√√√ 1

m

m∑
i=1

(h(x(i))− y(i))2 =
√
MSE

Questo indice è dunque ottenuto semplicemente come radice quadrata del
valore di MSE.

Per AITV sono stati implementati tutti i tre parametri di valutazione presentati,
ma nel leggere i valori di questi indici va tenuto presente il loro signi�cato, come
sarà descritto in merito al caso di studio nel capitolo 4.

3.4.2 AITV: Arti�cial Intelligence Test Validator

La realizzazione dello strumento di validazione AITV, secondo i dettagli teorici
espressi nel paragrafo precedente, consiste nell'implementazione di uno script in
linguaggio Python, con integrazioni di script ausiliari in linguaggio Concerto e
prevede inoltre l'impiego di altre tecniche di presentazione dei dati tipiche della
piattaforma di post-elaborazione AVL. Anche in questo caso, come per il pa-
ragrafo relativo al Parser, saranno ritenuti assodati molti concetti relativi alla
programmazione in Concerto e a funzioni e metodi già incontrati nelle precedenti
descrizioni.
Sebbene sia interamente realizzato in linguaggio Python, che garantisce l'accesso
a metodi indispensabili per l'implementazione dei calcoli introdotti nel paragrafo
precedente, AITV sfrutta il richiamo di due script csf per la gestione dell'in-
terfaccia utente. Inoltre perché potesse essere registrato come job di Concerto,
è stato necessario realizzare - analogamente al Parser - lo script AITV.csf che
semplicemente lancia l'esecuzione di AITV.py, che costituisce la vera e propria
implementazione del validatore. É AITV.csf in�ne ad essere registrato come job.
Il codice in esso contenuto è di seguito riportato:

Description: AITV Validation
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startPath = %CWF_AdaMoFilePath
startPath = StrReplaceAll(startPath,"\\","\")
ExecutePythonScript(startPath + "lib\AITV.py")

Dove la direttiva Description indica il titolo del Job (com'è visibile in �g.
3.17), mentre la funzione ExecutePythonScript lancia lo script AITV.py, posi-
zionato nella sub-folder lib della directory target del datasource AdaMo_Files,
il cui path è memorizzato nella User Variable %CWF_AdaMoFilePath. Quest'ul-
tima, dal momento che è stata concepita per essere usata nello script ausiliario
Python RegHandler.py del FileConverter, è una stringa strutturata con doppi
\\ e per questa ragione è necessaria una conversione perché sia fruibile anche in
linguaggio Concerto, per il quale il \ non è un carattere speciale, a di�erenza di
Python.
Si analizza ora il vero e proprio algoritmo di validazione, implementato in AITV.py,
il quale e�ettua una predizione basata su una Regressione Lineare con Gra-
dient Descent, che utilizza come input una o due variabili selezionate dal-
l'utente tra quelle disponibili nella chiave V_IN per stimare il valore del risultato
scelto. La sua logica di funzionamento si basa sul fatto che al momento dell'e-
secuzione del job sia aperto il �le di risultati da validare e applicato il layout di
post-elaborazione. Si ribadisce che è fondamentale che il test result sia aperto
mediante l'opportuno Datasource relativo alla sala prova di provenienza, perché
siano correttamente associate le formule responsabili del calcolo dei risultati da
validare.
Per questo codice Python è stato necessario importare i seguenti moduli:

� il modulo concerto è necessario per la gestione dei dataset del �le di ri-
sultati con Alias RESULT1 e di altri �le ausiliari come quello del training
set;

� il modulo numpy è mandatorio per la gestione dei dataset per mezzo del
metodo concerto.ds, che restituisce il dataset argomento come un ar-
ray di NumPy, ma è al contempo fondamentale per implementare i calcoli
necessari al Gradient Descent;

� il modulo pandas è mandatorio per la gestione dei dataset per mezzo del
metodo concerto.dsframe, che restituisce i dataset argomento come un
DataFrame di Pandas, ma è al contempo fondamentale per alcune strutture
utili alla gestione del training set;

� il modulo time, utilizzato per il metodo sleep che permette di sospendere
l'esecuzione dello script per alcuni secondi.

Le istruzioni utilizzate per l'importazione e la creazione delle relative variabili
conc, np, pd e time, sono di seguito riportate.
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Figura 3.17: Esecuzione del job di Validazione AITV.

import concerto as conc
import numpy as np
import pandas as pd
import time

Innanzitutto è necessario de�nire alcune funzioni che si rendono necessarie per
l'implementazione dell'algoritmo di validazione. La loro struttura e il loro scopo
è di seguito riportato.

� featureNormalize e�ettua la procedura di normalizzazione di una varia-
bile d'ingresso con il metodo della Z-Score Normalization, che produce
una distribuzione a media nulla per mezzo della sottrazione del valor medio
e dividendo per la deviazione standard:

z =
(x− µ)

σ

Per fare questo è necessario che la funzione riceva come argomento l'ar-
ray x dei valori della variabile di input, contenuti nel �le di training set.
Da esso è calcolata la media m dei valori con il metodo mean di NumPy
e analogalmente la deviazione standard s con il metodo std, anch'essa di
NumPy. In�ne, per ogni elemento dell'array x, sono e�ettuate le operazioni
di sottrazione e divisione per produrre l'array risultate x_norm, che in�ne
è restituito dalla funzione con la keyword return.

def featureNormalize(x):
m = np.mean(x)
s = np.std(x)
x_norm = (x-m)/s
return x_norm, m, s

Si noti che inoltre sono restituiti anche il valore della media m e della
deviazione standard s in modo tale che sia possibile - come vedremo -
normalizzare anche il valore del parametro di ingresso attuale, tramite il
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quale è e�ettuata la predizione del risultato richiesto.

� computeCost implementa il calcolo della funzione di costo J(Θ), secondo
la forma matriciale

J(Θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 =

1

2m
(XΘ− Y )T (XΘ− Y )

Si ricorda che questo valore stabilisce quanto la funzione ipotesi attuale
si discosti da quella ottimale ed è alla base del funzionamento del Gra-
dient Descent. Per il calcolo di J(Θ) è necessario passare alla funzione tre
parametri:

1. l'array bidimensionale X corrispondente alla matrice di input X di
dimensione mx(n+ 1) (con m uguale al numero dei training case e n
uguale al numero di variabili di input scelte dall'utente, che può valere
dunque 1 o 2), composta da una prima colonna di 1 - corrispondenti
al coe�ciente 1 associto al bias θ0 - seguita dalle colonne dei valori
delle n variabili di input estratte dal �le del training set (una sola
colonna nel caso di una sola variabile);

2. l'array monodimensionale y corrispondente al vettore colonna conte-
nente gli m valori di output reali del training set;

3. l'array monodimensionale theta corrispondente al vettore dei θk at-
tuali, che caratterizzano la funzione ipotesi attuale e sulla base dei
quali va calcolata la funzione di costo; è importante tenere a mente
che si tratta di un vettore riga, che sarà infatti trasposto in un vettore
colonna per il prodotto scalare.

Per l'implementazione del calcolo matriciale, è stato sfruttato il modulo
NumPy per le due funzioni dot, che e�ettua il prodotto righe per colonne
(inner product) di due array che naturalmente devono essere opportuna-
mente dimensionati, e transpose che restituisce un array corrispondente
alla matrice trasposta di quella corrispondente all'array passato come ar-
gomento. In particolare il calcolo del prodotto XΘ è necessario trasporre
l'array theta con np.transpose prima di passarlo come parametro alla
funzione np.dot che e�ettua il prodotto righe per colonne, dal momento
che la variabile theta è un array riga di dimensione 1x(n+1). Si ottiene in
questo modo un array NumPy corrispondente ad una matrice di dimensione
mx1. Ne consegue dunque che il termine (XΘ − Y ) si ottiene semplice-
mente e�ettuando una sottrazione elemento per elemento delle due matrici
di dimensione mx1 ed è implementato in Python in questo modo:
term = np.dot(X,np.transpose(theta))-y
La matrice ottenuta, corrispondente alla variabile term, va successivamen-
te trasposta per ottenere (XΘ − Y )T , che sarà in�ne moltiplicato per la
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matrice (XΘ− Y ) con il prodotto righe per colonne:
np.dot(np.transpose(term),term)-y)
che moltiplicato il fattore 1

2m
restituisce in�ne il valore di J(Θ):

J = np.dot(np.transpose(term),term)-y)/(2*m)
In sintesi la funzione computeCost è così de�nita:

def computeCost(X, y, theta):
m = len(y)
term = np.dot(X,np.transpose(theta))-y
J = np.dot(np.transpose(term),term)-y)/(2*m)
print(J)
return J

Si noti che la variabile m rappresenta il numero di campioni del training set
ed è infatti ottenuta dalla funzione built-in len che restituisce la dimen-
sione dell'array y passato come parametro. In�ne l'istrunzione print(J)
stampa sulla �nestra dei messaggi di Concerto il valore di J.

� gradientDescent implementa l'algoritmo di ricerca dei valori θk ottimali
mediante il Gradient Descent, come è stato descritto nel paragrafo pre-
cedente. Le due impostazioni fondamentali per e�ettuare questa proce-
dura, entrambe stabilite dall'utente, sono costituite dal valore del Lear-
ning Rate α e dal numero di iterazioni richieste per l'algoritmo di Gra-
dient Descent. Questi parametri sono passati come argomenti alpha e
num_iter alla funzione, insieme agli stessi tre argomenti X, y e theta uti-
lizzati da computeCost. Per realizzare l'algoritmo ci si è serviti di tre for
loop annidati:

1. il loop più esterno serve a iterare il processo per il numero di volte
richiesto dall'utente, memorizzato nella variabile num_iters;

2. il loop intermedio itera sui diversi θk per l'aggiornamento di ciascuno
di loro;

3. il loop più interno e�ettua la sommatoria per l'incremento del θk
attuale.

Si ricorda infatti che l'aggiornamento dei valori dei θk, e�ettuata secondo
la de�nizione

θnewk = θoldk − α
∂J(Θ)

∂θk

si basa su un metodoBatch, che dunque sfrutta tutte le istanze del training
set per il calcolo del gradiente ∇:

∂J(Θ)

∂θk
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
k
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Il codice della funzione è dunque il seguente:

def gradientDescent(X, y, theta, alpha, num_iters):
m = len(y)
for iter in range(num_iters):

for k in range(len(theta)):
incr=0
for i in range(m):

incr = incr + (np.dot(X[i,],np.transpose(theta))
-y[i])*X[i,k]

theta[k]=theta[k]-(alpha*incr/m)
print("Actual value of Cost Function J:")
J_act = computeCost(X,y,theta)

return theta

Si noti che anche in questo caso è stato salvato in m il numero di trai-
ning case, mediante la funzione len applicata sull'array degli output y.
Inoltre per l'implementazione dei loop è stata adoperata anche in questo
la funzione built-in range (già descritta nel merito del Parser), alla quale è
passato il numero di iterazioni num_iters per il loop più esterno, la dimen-
sione del vettore riga corrispondente all'array theta per iterare sui diversi
θk nel loop intermedio, il numero di istanze del training set m nel loop più
interno. In particolare il calcolo del gradiente ∇ per ciascun θk si basa sul

calcolo della sommatoria
m∑
i=1

(hθ(x
(i))−y(i))x

(i)
k che è e�ettuato aggiungendo

alla variabile incr (inizializzata a 0 fuori dall'ultimo loop) un contributo
calcolato in ogni iterazione dell'ultimo ciclo for come (hθ(x

(i)) − y(i))x
(i)
k ,

che in Python si può implementare con l'istruzione:
incr = incr + (np.dot(X[i,],np.transpose(theta))-y[i])*X[i,k]
Nella quale il vettore X[i,] corrispondente all'i-esima riga della matrice X e
contenente il coe�ciente 1 per il bias seguito dai valori i-esimi delle variabi-
li di input, è moltiplicato (con prodotto righe per colonne) per la trasposta
di theta ottenuta con la funzione np.transpose. Questo prodotto tra una
matrice 1x(n+1) (X[i,]) e una (n+1)x1 (np.transpose(theta) (si tenga
a mente che n è il numero di variabili di input selezionate dall'utente e può
valere 1 o 2) ha come risultato uno scalare a cui è dunque sottratto il valore
i-esimo della variabile di output. L'intero termine (hθ(x

(i))− y(i)) così ot-
tenuto, è moltiplicato per x(i)

k , cioè l'i-esimo valore della k-esima variabile
di input, che corrisponde all'elemento X[i,k]. naturalmente nel caso di i
uguale a 0, per qualsiasi k, il valore di X[i,k] sarà 1, in quanto coe�ciente
di bias.
In�ne è calcolato - e mostrato nella �nestra di messaggi di Concerto dal-
l'apposita istruzione contenuta nel corpo di ComputeCost - il valore della
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funzione di costo J(Θ) al termine di ognuna delle num_iters iterazioni,
per tenere traccia dell'evoluzione della funzione ipotesi hθ(x) nel corso del
Gradient Descent. Tale valore, assegnato alla variabile J_act, è calcola-
to mediante la funzione computeCost precedentemente de�nita, alla quale
sono passati l'array corrispondente alla matrice degli ingressi X, l'array
corrispondente alla colonna delle uscite y e l'array corrispondente alla riga
degli attuali θk theta.

� computeErrors e�ettua il calcolo degli indici che permettono di valutare
la funzione ipotesi hθ(x) in base all'errore di predizione commesso su tutti
gli elementi del training case. In particolare i tre parametri sono il Mean
Absolute Error (MAE), il Mean Squared Error (MSE) e il Root
Mean Squared Error (RMSE), descritti nel capitolo precedente e così
de�niti:

MAE =
1

m

m∑
i=1

|h(x(i))− y(i)|

MSE =
1

m

m∑
i=1

(h(x(i))− y(i))2

RMSE =

√√√√ 1

m

m∑
i=1

(h(x(i))− y(i))2 =
√
MSE

Questa funzione necessita degli stessi argomenti di computeCost, cioè l'ar-
ray corrispondente alla matrice degli ingressi X, l'array corrispondente alla
colonna delle uscite y e l'array corrispondente alla riga degli attuali θk
theta. É innanzitutto assegnato anche in questo caso ad m il numero di
campioni, che è pari alla dimensione di y, ed è implementato un ciclo for
su tutte le istanze del training set per mezzo della funzione range a cui
è dunque passato il parametro m. All'interno di questo loop è assegnato
alla variabile error l'errore h(x(i)) − y(i) relativo al training case attua-
le ed è utilizzato per realizzare le sommatorie presenti nelle espressioni di
MAE e MSE, incrementando le relative variabili MAE e MSE (inizializzate a
0 fuori dal loop) ad ogni iterazione rispettivamente con il valore assoluto
di error - per mezzo della funzione np.absolute - e con il quadrato di
error - per mezzo della funzione np.power. Analogamente a quanto vi-
sto per gradientDescent, anche in questo caso il valore dell'espressione
h(x(i))− y(i), assegnato a error, è calcolato per mezzo dell'istruzione
error = np.dot(X[i,],np.transpose(theta))-y[i]
In�ne i valori così ottenuti al termine del loop sono divisi per m per com-
pletare il calcolo di MAE e MSE, mentre l'indice RMSE è calcolato sempli-
cemente come radice del valore di MSE, utilizzando la funzione np.sqrt.
Il codice della funzione computeErrors è il seguente:
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def computeErrors(X, y, theta):
m = len(y)
MAE = 0
MSE = 0
for i in range(0,m):

error = np.dot(X[i,],np.transpose(theta))-y[i]
MAE = MAE + np.absolute(error)
MSE = MSE + np.power(error)

MAE = MAE/m
MSE = MSE/m
RMSE = np.sqrt(MSE)
print("The Mean Absolute Error (MAE) calculated over the

training set is:", MAE)
print("The Mean Squared Error (MSE) calculated over the

training set is:", MSE)
print("The Root Mean Squared Error (RMSE) calculated over

the
training set is:", RMSE)

return MAE, MSE, RMSE

Anche in questo caso i valori ottenuti, prima di essere restituiti con la
keyword return, sono anche stampati sulla �nestra dei messaggi di Con-
certo.

Le quattro funzioni precedentemente de�nite sono adoperate per realizzare l'al-
goritmo di validazione di AITV, la cui struttura è riportata in �g. 3.18. Prima
di procedere all'analisi dei vari step, si speci�ca che in questo contesto sono sta-
te create e adoperate altre cinque User Variable di Concerto, tutte associate al
Work Environment AITV in uso, necessarie per lo scambio di parametri tra gli
ambienti di scripting Concerto e Python:

� %CWF_AITV_in, che indica il primo parametro di input selezionato dall'u-
tente, in base al quale è e�ettuata la predizione;

� %CWF_AITV_in2, che indica l'eventuale secondo parametro di input selezio-
nato dall'utente, ma è una stringa vuota nel caso in cui sia richiesto l'uso
di un solo ingresso;

� %CWF_AITV_out, che indica il risultato della post-elaborazione da validare;

� %CWF_AITV_SelPoint, che rappresenta l'indice del dataset %CWF_AITV_out
selezionato dall'utente per la validazione;

� %CWF_AITV_alpha, che indica il Learning Rate selezionato dall'utente per
la predizione;
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Figura 3.18: Struttura dell'algoritmo di validazione AITV.
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Figura 3.19: Dialog di AITV per la richiesta di input all'utente.

� %CWF_AITV_nIters, che indica il numero di iterazioni del Gradient Descent,
richiesto dall'utente;

� %CWF_AITV_syn, che serve a sincronizzare l'esecuzione di AITV.py con lo
script Concerto che e�ettua il caricamento della �nestra di dialogo con
l'utente.

In riferimento alla �g. 3.18, sono di seguito descritte le cinque fasi che compon-
gono la procedura di validazione.

1. Innanzitutto è necessario ricevere dall'utente gli input necessari a pa-
rametrizzare l'algoritmo, mediante una semplice interfaccia gra�ca, rap-
presentata da un Dialog. Nel paragrafo 3.3 sono stati introdotti gli ele-
menti base che AVL Concerto mette a disposizione per la realizzazione dei
layout di post-elaborazione, molti dei quali sono orientati alla costituzione
di e�caci interfacce gra�che per l'interazione con l'utente, volte alla rea-
lizzazione di applicazioni complesse come quella rappresentata da questo
progetto. In particolare in questo step ci si avvale di un Dialog, cioè un
oggetto associabile ad una Window, che rappresenta una �nestra di dia-
logo tramite la quale è possibile interagire con l'utente, attraverso diversi
oggetti quali action button, listbox, check box e così via. A ciascuno di
questi oggetti sono associati speci�ci eventi legati a transizioni di stato co-
me ad esempio il cambio dell'elemento selezionato per un listbox o per un
action button l'attimo in cui è premuto. Al veri�carsi di un evento è pos-
sibile eseguire uno script associato, che può essere un �le csf o py, oppure
può essere uno script embedded, cioè associato direttamente all'oggetto e
in particolare al suo evento. La �nestra creata è stata salvata nella solita

103



cartella lib con il nome AITV_Selection.cdg ed è riportata in �g. 3.19,
a cui si fa riferimento nell'analisi che segue dei vari oggetti che la compon-
gono. Si speci�ca che tutti gli script associati agli eventi di questi oggetti,
sono di tipo embedded e realizzati in linguaggio Concerto, indispensabile
per accedere a librerie e classi necessarie per manipolare le �nestre. Inoltre
al Dialog è associato il nome "AITV Selection Dialog", tramite il quale
è possibile istanziare diversi oggetti utili.

(a) Il ComboBox InputBox è un menu a tendina a cui è stato associato
il dataset INPUTS:D'Inputs, che fa riferimento alla lista dei canali di
input tipici della prova eseguita, estratti dal relativo �le nella cartella
lib, e permette dunque all'utente di selezionare la prima variabile
di input da adoperare per la predizione. Naturalmente è necessario
che il �le contenente la lista dei parametri di input sia aperto al mo-
mento del caricamento della �nestra, ma questo dettaglio sarà meglio
chiarito più avanti. L'oggetto gra�co InputBox in ascolto dell'even-
to OnSelChanged, innescato al cambiamento della selezione tra i vari
elementi, a cui è associato il seguente script:

dlg=SelWin("AITV Selection Dialog")
cb=dlg.SelObj("InputBox","COMBOBOX")
%CWF_AITV_in=cb.SelectedText
cb2=dlg.SelObj("InputBox2","COMBOBOX")
inDS=INPUTS:D'Inputs
newTxt=""
for i=1 to npoints(inDS)

if not(inDS.y[i] = %CWF_AITV_in) then
newTxt=newTxt + inDS.y[i] + StrChr(10)

endif
next i
newTxt=StrErase(newTxt,StrLen(newTxt),1)
cb2.Text=newTxt
dlg.Paint()

Per mezzo della funzione SelWin della libreria Script, è possibile
ottenere un oggetto della classe Window corrispondente alla �nestra
Dialog identi�cata dal nome "AITV Selection Dialog", dopodiché
tale oggetto è assegnato alla variabile dlg. In questo modo è possibile
accedere a tutti i metodi della clase Window che permettono di para-
metrizzare, manipolare, aprire o chiudere le �nestre. In questo caso
dlg è utilizzato per selezionare l'oggetto corrispondente al ComboBox
InputBox, per mezzo del metodo SelObj, al quale è passato il nome
dell'oggetto target e la tipologia a cui a�erisce (cioè "COMBOBOX").
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Questo metodo restituisce un oggetto della classe Object12, che per-
mette di parametrizzare e manipolare gli oggetti gra�ci. L'oggetto
cb così ottenuto è usato per accedere al nuovo elemento selezionato
dall'utente sulla ComboBox InputBox, disponibile grazie all'attributo
cb.SelectedText, il cui valore (String) è assegnato alla User Variable
%CWF_AITV_in, grazie alla quale è possibile accedere a questa stringa
anche nello script Python AITV.py.
Successivamente è generata la lista delle rimanenti variabili di input,
tra i quali l'utente potrebbe eventualmente selezionare il secondo da-
taset per la predizione. A tale scopo è istanziato l'oggetto cb2 relativo
al ComboBox InputBox2 (d) utilizzato per la selezione dell'eventuale
seconda variabile di input, utilizzando il metodo visto precedente-
mente. Con un for loop che scorre su tutti gli elementi del dataset
INPUTS:D'Inputs, assegnato a inDS, è generata la stringa newTxt
contenente tutti i nomi di canali diversi da quello appena selezionato in
InputBox, separati dal carattere di new line che si può ottenere con la
funzione StrChr(ASCIIcode) che restituisce il carattere ASCII corri-
spondente al codice passato come argomento (in questo caso 10). Que-
sto loop genera tutti gli elementi del ComboBox InputBox2, aggiun-
gendo come ultimo carattere della stringa un StrChr(10) di troppo,
che è eliminato mediante la funzione StrErase della libreria String.
In�ne newTxt è assegnato all'attributo Text dell'oggetto cb2 e, a
seguito di un refresh della �nestra con il metodo dlg.Paint(), il
ComboBox InputBox2 è parametrizzato correttamente.

(b) Il ComboBoxOutputBox, in maniera del tutto analoga ad InputBox,
è utilizzato per far selezionare all'utente l'output da validare, tra
quelli calcolati dalla post-elaborazione ed elencati nel relativo �le,
che dev'essere anch'esso aperto al momento del caricamento della �-
nestra Dialog. A questo ComboBox è dunque associato il dataset
OUTPUTS:D'Outputs ed è in ascolto dell'evento OnSelChanged, al ve-
ri�carsi del quale esegue questo script embedded:

dlg=SelWin("AITV Selection Dialog")
cb=dlg.SelObj("OutputBox","COMBOBOX")
%CWF_AITV_out=cb.SelectedText
lb=dlg.SelObj("CaseList", "LISTBOX")
lb.AddDS("RESULT1:"+%CWF_AITV_out)

Le prime tre righe, analogamente a InbutBox, selezionano la �nestra
Dialog, ottengono l'oggetto relativo al ComboBox OutputBox e asse-
gnano il nuovo valore selezionato dall'utente, accessibile da cb.Selec-

12N.B. In questo caso il termine "object", usato come nome della classe, sta ad indicare gli
"oggetti gra�ci".

105



tedText, alla User Variable %CWF_AITV_out. Successivamente è sele-
zionato l'oggetto (e) corrispondente al ListBox CaseList, che permet-
te all'utente di selezionare quale valore vuole validare, tra quelli ap-
partenenti al dataset appena selezionato in OutputBox dall'elenco dei
risultati disponibili. Dopo aver istanziato quest'oggetto lb, gli viene
assegnato il dataset appena selezionato e salvato in %CWF_AITV_out,
per mezzo del metodo lb.AddDS, a cui è passato il nome del dataset
con il classico costrutto Alias:KEY'DATASET. Si ricorda che la lista
dei parametri di Output, salvata nel relativo �le, presenta per ogni
elemento la stringa KEY'DATASET.

(c) Il CheckBox SecondInput permette all'utente di accedere alla sele-
zione di una seconda variabile di input per la predizione e ha dunque
la funzione di attivare o nascondere tutti gli oggetti relativi a essa.
Questo semplice oggetto è in ascolto dell'evento OnClick, scatenato
al variare dello stato del CheckBox, ad opera dell'utente. In corri-
spondenza di questa transizione è dunque eseguito il seguente script
embedded :

dlg=SelWin("AITV Selection Dialog")
chb=dlg.SelObj("SecondInput","CHECKBOX")
cb=dlg.SelObj("InputBox2","COMBOBOX")
cb.Visible=chb.Checked
t_label=dlg.SelObj("xCaseLabel2","TEXT")
t_label.Visible=chb.Checked
t_value=dlg.SelObj("xCase2","TEXT")
t_value.Visible=chb.Checked
dlg.Paint()
if chb.Checked = 0 then

%CWF_AITV_in2=""
endif

Anche in questo caso, tramite le prime due righe, è selezionata la
�nestra di Dialog e istanziato di conseguenza dlg, tramite il quale è
selezionato l'oggetto relativo al CheckBox SecondInput assegnato al-
la variabile chb. É poi istanziato l'oggetto cb relativo alla ComboBox
InputBox2, che si vuole nascondere nel caso in cui il CheckBox non
sia spuntato. Per questo motivo è assegnato all'attributo cb.Visible
il valore di chb.Checked, che restituisce 1 nel caso in cui il CheckBox
relativo a chb sia spuntato e 0 altrimenti. Allo stesso modo sono mo-
strati o nascosti i due Text xCaseLabel2 ("Related 2nd Input Value:")
e xCase2 (g), rispettivamente mediante gli oggetti t_label e t_value
e in�ne, per rendere attive queste modi�che dinamiche, è necessario
e�ettuare un refresh del Dialog mediante il metodo dlg.Paint(). La
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parte destra della �g. 3.19 mostra l'aspetto della �nestra nel caso in
cui il CheckBox sia deselezionato.
Le ultime tre righe di questo script contengono un if statement neces-
sario a svuotare la User Variable %CWF_AITV_in2, associata al Combo-
Box InputBox2, in modo tale che in AITV.py sia possibile determinare
se l'utente abbia selezionato solo una variabile di input o due.

(d) Il ComboBox InputBox2, più volte citato nel merito degli oggetti
precedenti, è un menu a tendina per la selezione della seconda varia-
bile di input, nel caso in cui sia spuntato il CheckBox SecondInput.
Come si è potuto evincere, non ha direttamente associato il data-
set INPUTS:D'Inputs, diversamente da InputBox: il suo contenuto
è creato dallo script associato all'evento OnSelChanged di InputBox
eliminando dalla lista contenuta in INPUTS:D'Inputs il canale già se-
lezionato come primo input. Anche questo oggetto è in ascolto dell'e-
vento OnSelChanged, in corrispondenza del quale esegue questa pro-
cedura:

dlg=SelWin("AITV Selection Dialog")
cb=dlg.SelObj("InputBox2","COMBOBOX")
%CWF_AITV_in2=cb.SelectedText

In modo del tutto analogo a InputBox, è selezionato l'oggetto del-
la �nestra Dialog e successivamente quello del ComboBox InputBox2,
tramite il quale si accede all'attributo SelectedText, il cui valore è
in�ne assegnato alla User Variable %CWF_AITV_in2.

(e) Il ListBox CaseList, come anticipato, presenta la lista di tutti i pun-
ti del dataset risultato, selezionato dall'utente tramite OutputBox, e
permette dunque all'utente di selezionare il valore da validare. Non
ha un'associazione statica ad un dataset ma, come è stato descritto,
essa varia in base alla selezione su OutputBox, per opera dello script
associato a tale ComboBox. Anche CaseList è in ascolto dell'evento
OnSelChanged e ha il seguente script associato:

dlg=SelWin("AITV Selection Dialog")
lb=dlg.SelObj("CaseList", "LISTBOX")
%CWF_AITV_SelPoint=lb.GetSelectedPoints()
t_index=dlg.SelObj("Index","TEXT")
t_index.Text=lb.GetSelectedPoints()
t_value=dlg.SelObj("xCase","TEXT")
x_case=DS("RESULT1:"+%CWF_AITV_in).y[%CWF_AITV_SelPoint]
t_value.Text=CStr(x_case)
t_value2=dlg.SelObj("xCase2","TEXT")
x_case2=DS("RESULT1:"+%CWF_AITV_in2).y[%CWF_AITV_SelPoint]
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t_value2.Text=CStr(x_case2)
dlg.Paint

Le prime tre righe, ancora una volta, estraggono semplicemente l'input
dell'utente e lo salvano nella corrispondente User Variable %CWF_AITV
_SelPoint, ma in questo caso siamo interessati ad ottenere l'indice
(di tipo Integer) e non del valore selezionato dall'utente e per questo
motivo è adoperato il metodo lb.GetSelectedPoints(). Il codice
successivo è invece �nalizzato ad aggiornare tre oggetti Text: Index
(h) con l'indice selezionato; xCase (f) con il valore - corrispondente
all'indice Index - del dataset di input selezionato su InputBox; xCase2
(g) con il corrispondente valore del secondo dataset di input selezio-
nato su InputBox. Per fare quest'ultima operazione è adoperata la
funzione DS della libreria Standard, che restituisce il dataset corri-
spondente alla stringa Alias:KEY'DATASET passata come parametro
ed è in�ne utilizzato il metodo y.[index] dell'oggetto relativo a tale
dataset, per estrarre il valore associato al punto scelto usando come
indice %CWF_AITV_SelPoint. I valori di x_case e x_case2, ottenuti
in questo modo, sono assegnati come stringhe alle property Text dei
due oggetti t_value e t_value2 relativi alle caselle testuali (f) e (g),
e�ettuando il casting dei valori verso il tipo String con la funzione
CStr della libreria String. In�ne è e�ettuato il refresh della �nestra,
tramite il metodo dlg.Paint, in modo tale da mostrare sui Text i
valori aggiornati.

(f) Il Text xCase, manipolato dallo script dell'oggetto CaseList, non ha
handler di eventi associati.

(g) Il Text xCase2 è mostrato solo nel caso in cui il CheckBox Second-
Input sia spuntato e manipolato dallo script dell'oggetto CaseList.
Non ha handler di eventi associati.

(h) Il Text Index, manipolato dallo script dell'oggetto CaseList, non ha
handler di eventi associati.

(i) Il TextBox LearnRate è utilizzato per permettere all'utente di in-
serire il valore di Learning Rate per l'algoritmo Gradient Descent.
Questo tipo di oggetto consente di associare direttamente una User
Variable, a cui è automaticamente assegnato un nuovo valore non
appena l'utente aggiorna il TextBox. Per questo motivo è stato suf-
�ciente associare a LearnRate la variabile %CWF_AITV_alpha, senza
aver bisogno di implementare un ulteriore script.

(j) Il TextBox nIters, analogamente a LearnRate, permette all'uten-
te di inserire il numero di iterazioni per l'algoritmo Gradient De-
scent e gli è stata associata la User Variable %CWF_AITV_nIters,
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che viene automaticamente aggiornata con il meccanismo descritto
precedentemente.

(k) Il Button CONTINUE, che presenta sulla super�cie il testo "START
VALIDATION", consente di confermare i dati immessi dall'utente e chiu-
dere il Dialog per proseguire con l'esecuzione dello script che l'ha
aperto. Per associare a CONTINUE l'azione di chiusura della �nestra, è
su�ciente spuntare il checkbox Exit Dialog Execution in Window,
tipico di questo tipo di oggetto e predisposto per questo meccanismo.

Questa doverosa premessa fornisce molti dettagli necessari a comprendere
la struttura di questo primo step della validazione. Come è stato speci�-
cato, prima di aprire il Dialog è necessario caricare in Concerto i due �le
contenenti le liste dei parametri di input e dei risultati della prova e�et-
tuata, senza dimenticare che dev'essere già aperto con Alias RESULT1 il �le
di risultati oggetto della validazione. Il codice di questa prima sezione è il
seguente:

test_type = conc.ds("RESULT1:V_IN'Test_Type")[0]
startPath = conc.variables["%CWF_AdaMoFilePath"]
inp_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_Inputs.txt")
out_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_Outputs.txt")
inp_file.open("INPUTS")
out_file.open("OUTPUTS")

Dal primo punto13 del dataset Test_Type, appartenente alla chiave V_IN
del �le di risultati RESULT1, è ottenuto il nome identi�cativo della tipologia
di prova svolta ed è salvato nella variabile test_type come sempre con il
metodo conc.ds. Successivamente è salvato in startPath il contenuto del-
la User Variable %CWF_AdaMoFilePath che costituisce il punto di partenza
per accedere alla cartella lib contenente script e �le testuali di nostro in-
teresse. Sono poi selezionati - con il metodo conc.data.select_file - i
due �le utilizzando il Datasource AdaMo_Files, che garantisce di trovare
sotto la chiave D i dataset contenenti le liste di canali, istanziando così i due
oggetti inp_file e out_file della classe FileObject. In�ne è eseguito il
metodo open di questi due oggetti speci�cando gli Alias INPUTS e OUTPUTS
completando una procedura sostanzialmente analoga a quella vista per il
Parser.
A questo punto è possibile caricare e mostrare all'utente il Dialog, ma per

13Si sceglie il primo punto per sicurezza, dato che sarà sempre presente sebbene non sappiamo
a priori di quanti punti sia composta la chiave V_IN. I valori di Test_Type saranno comunque
sempre tutti uguali per ogni punto.
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fare questo è necessario ricorrere allo script ausiliario LoadDialog.csf in
linguaggio Concerto, la cui esecuzione tuttavia procede parallelamente a
quella di AITV.py. Per questo motivo è necessario sincronizzare i due
thread, mediante la User Variable %CWF_AITV_syn, il cui valore è inizial-
mente 0 e viene impostato a 1 da LoadDialog.csf al termine della sua
esecuzione. Per questo motivo è necessario un while loop di attesa e dun-
que questa sezione è così implementata:

conc.variables["%CWF_AITV_syn"]="0"
conc.execute_concerto_script(startPath+"lib\\LoadDialog.csf")
while conc.variables["%CWF_AITV_syn"] == 0:

pass
conc.variables["%CWF_AITV_syn"]="0"

Il valore di %CWF_AITV_syn è inizialmente impostato 0 e al termine del
loop di attesa è resettato a 0, con l'accortezza di assegnare comunque un
dato di tipo String a conc.variables["var"] come prescritto da AVL
nella documentazione relativa al modulo concerto.
Passiamo ora ad analizzare la struttura di LoadDialog.csf, il cui codice è
di seguito riportato:

startPath = %CWF_AdaMoFilePath
startPath = StrReplaceAll(startPath,"\\","\")
LoadWindow(startPath+"lib\AITV_Selection.cdg")
dlg=SelWin("AITV Selection Dialog")
dlg.Activate()
dlg.WaitForDialog()
dlg.Close()
%CWF_AITV_syn=1

Innanzitutto è determinato il path iniziale per la selezione della �nestra,
con la solita tecnica di sostituzione del doppio \\ con un solo \, dopodiché
la �nestra è caricata nel layout di post-elaborazione correntemente aper-
to, con la funzione LoadWindow della libreria Script. É poi assegnato alla
variabile dlg l'oggetto corrispondente al Dialog, con la funzione SelWin,
a cui è passato il nome identi�cativo "AITV Selection Dialog" come già
descritto per gli script embedded degli oggetti gra�ci. Successivamente so-
no eseguiti tre metodi dell'oggetto dlg: dlg.Activate() rende la �nestra
attiva e la porta in primo piano per far partire l'interazione con l'uten-
te; dlg.WaitForDialog() lascia in attesa lo script LoadDialog.csf �nchè
l'utente con conferma i parametri scelti cliccando sul Button CONTINUE14;
dlg.Close() chiude la �nestra rimuovendola dal layout corrente senza

14É stato con�gurato in modo tale da chiudere il Dialog una volta premuto.
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alterarlo. Come ultima operazione è in�ne impostato a 1 il valore di
%CWF_AITV_syn, per comunicare a AITV.py la conclusione dell'esecuzio-
ne di LoadDialog.csf.
Tornando a spostare il focus su AITV.py, i valori selezionati dall'utente,
come è stato descritto, sono salvati nelle relative User Variable e sono a
questo punto assegnati per maggiore semplicità computazionale alle varia-
bili locali feature_x, feature_x2, feature_y, point, iterations, alpha.
Si tenga a mente che le User Variable sono rese disponibili in ambiente Py-
thon da conc.variables come stringhe, perciò è necessario e�ettuare il
casting con le funzioni int e float per le variabili point, iterations e
alpha. Sono poi estratti il singolo valore risultate scelto dall'utente e il
corrispondente valore della variabile di input selezionata, i quali sono as-
segnati rispettivamente a y_case e x_case. Il contenuto di feature_x2
è invece veri�cato in un if statement in modo tale che sia utilizzato per
assegnare il valore corretto a x_case2 solo nel caso in cui sia diverso da
una stringa vuota: nella presentazione del CheckBox SecondInput è stato
riportato infatti che la variabile %CWF_AITV_in2 è resettata nel caso in cui
l'utente rinunci alla selezione di una seconda veriabile di input. In�ne sono
chiusi i �le contenenti le liste dei canali di input e output. Il codice di
quest'ultima sezione dello step 1 è di seguito riportato:

feature_x = conc.variables["%CWF_AITV_in"]
feature_x2 = conc.variables["%CWF_AITV_in2"]
feature_y = conc.variables["%CWF_AITV_out"]
point=int(conc.variables["%CWF_AITV_SelPoint"])-1
iterations = int(conc.variables["%CWF_AITV_nIters"])
alpha = float(conc.variables["%CWF_AITV_alpha"])
x_case=conc.ds("RESULT1:V_IN'"+feature_x)[point]
if feature_x2 != "":

x_case2=conc.ds("RESULT1:V_IN'"+feature_x2)[point]
y_case=conc.ds("RESULT1:"+feature_y)[point]
inp_file.close()
out_file.close()
feature_y = feature_y.split("'")[1]

Si noti l'ultima istruzione: la stringa feature_y è inizialmente nella forma
KEY'DATASET, ma nel training case i nomi delle variabili di output sono
riportati senza l'indicazione della chiave di provenienza, come è stato illu-
strato nel merito del Parser. Perciò è stato necessario adoperare il metodo
split delle stringhe di Python, per dividere la stringa nei due elementi a
sinistra e a destra dell'apice ' e scegliere solo il secondo.
Complessivamente questo primo step di AITV.py è così implementato:
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test_type = conc.ds("RESULT1:V_IN'Test_Type")[0]
startPath = conc.variables["%CWF_AdaMoFilePath"]
inp_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_Inputs.txt")
out_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_Outputs.txt")
inp_file.open("INPUTS")
out_file.open("OUTPUTS")

conc.execute_concerto_script(startPath+"lib\\LoadDialog.csf")
while conc.variables["%CWF_AITV_syn"] == 0:

pass
conc.variables["%CWF_AITV_syn"]="0"

feature_x = conc.variables["%CWF_AITV_in"]
feature_x2 = conc.variables["%CWF_AITV_in2"]
feature_y = conc.variables["%CWF_AITV_out"]
point=int(conc.variables["%CWF_AITV_SelPoint"])-1
iterations = int(conc.variables["%CWF_AITV_nIters"])
alpha = float(conc.variables["%CWF_AITV_alpha"])
x_case=conc.ds("RESULT1:V_IN'"+feature_x)[point]
if feature_x2 != "":

x_case2=conc.ds("RESULT1:V_IN'"+feature_x2)[point]
y_case=conc.ds("RESULT1:"+feature_y)[point]
inp_file.close()
out_file.close()
feature_y = feature_y.split("'")[1]

2. Lo step successivo consiste nel caricamento del training set con la con-
seguente selezione delle opportune colonne in base alle variabili di
input selezionate dall'utente. Innanzitutto è determinato, in base al tipo
di prova, il path del �le di training set che viene dunque aperto e caricato
come DataFrame di Pandas, in maniera analoga a quanto visto per il Parser:

training_set_path=startPath+"lib\\"+test_type+
"_TrainingSet.txt"
training_set = pd.read_csv(training_set_path, sep="\t")

Dopodiché da training_set è estratto un altro DataFrame data con il
metodo loc, che permette di speci�care quali righe e colonne prendere dal-
l'oggetto da cui è invocata. Nel nostro caso è necessario mantenere tutte
le righe per conservare i dati di tutti i training case, ma sono selezionate
solo le colonne corrispondenti alle due variabili di input e quella di output
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scelta, che sono successivamente rinominate per maggiore comodità in 'X',
'X2' e 'y' con il metodo rename, a cui è passato come argomento un dic-
tionary contenente le istruzioni per assegnare le nuove label:

data = training_set.loc[:, [feature_x,feature_x2,feature_y]]
data = data.rename(columns=feature_x: 'X', feature_x2: 'X2',
feature_y: 'y')

Questa operazione è eseguita all'interno di un blocco condizionale che veri-
�ca l'eventuale presenza di una seconda variabile di input selezionata dal-
l'utente: nel caso in cui sia richiesta una regressione lineare monovariabile,
sono replicate le due istruzioni precedenti, ma con il solo input relativo a
feature_x. L'if statement è dunque il seguente:

if feature_x2 != "":
data=training_set.loc[:,[feature_x,feature_x2,feature_y]]
data=data.rename(columns=feature_x:'X',feature_x2:'X2',

feature_y: 'y')
else:

data=training_set.loc[:,[feature_x,feature_y]]
data=data.rename(columns=feature_x:'X',feature_y:'y')

I DataFrame di Pandas permettono di accedere alle colonne che lo com-
pongono per mezzo delle relative label e in questo modo le colonne di valori
delle due variabili di input sono estratte e assegnate come array NumPy
alle variabili x_orig e x_orig2, che sono successivamente passate come
argomenti della funzione featureNormalize per la Z-Score Normaliza-
tion. Analogamente alle operazioni precedenti riguardo la seconda feature
di input, x_orig2 è istanziata solamente nel caso in cui feature_x2 non
sia vuota:

x_orig = np.array(data.X)[:,None]
x, mean, std_dev = featureNormalize(x_orig)
if feature_x2 != "":

x_orig2 = np.array(data.X2)[:,None]
x2, mean2, std_dev2 = featureNormalize(x_orig2)

Per ciascuna feature sono restituite rispettivamente la colonna dei valori
di input normalizzati, la media dei valori originali e la deviazione standard
(questi ultimi due parametri torneranno utili al passo 4) e sono assegna-
ti alle variabili x, mean e std_dev per la prima feature e a x2, mean2 e
std_dev2 per l'eventuale seconda feature.
In�ne è estratta anche la colonna dei valori della variabile di output ed
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assegnata come a y array NumPy ed è calcolato il numero di campioni nel
training set come dimensione di y:

y = np.array(data.y)
m = len(y)

Complessivamente questo secondo step è così implementato:

training_set_path=startPath+"lib\\"+test_type+
"_TrainingSet.txt"
training_set = pd.read_csv(training_set_path, sep="\t")
if feature_x2 != "":

data=training_set.loc[:,[feature_x,feature_x2,feature_y]]
data=data.rename(columns=feature_x:'X',feature_x2:'X2',

feature_y:'y')
else:

data=training_set.loc[:,[feature_x,feature_y]]
data=data.rename(columns=feature_x:'X',feature_y:'y')

x_orig = np.array(data.X)[:,None]
x, mean, std_dev = featureNormalize(x_orig)
if feature_x2 != "":

x_orig2 = np.array(data.X2)[:,None]
x2, mean2, std_dev2 = featureNormalize(x_orig2)

y = np.array(data.y)
m = len(y)

3. Questo step, cruciale per il processo di validazione, esegue l'algoritmo
di Gradient Descent che cerca la funzione ipotesi ottimale per la pre-
dizione sul training set. Per poter fruire della funzione gradientDescent
precedentemente de�nita, è necessario disporre delle opportune variabili
X e theta da passare come argomenti insieme a y, alpha e iterations
ottenute invece allo step 2. La variabile X dev'essere infatti un array bidi-
mensionale di dimensione mx(n+ 1) composto da una prima colonna di m
valori uguali a 1, a�ancata dalle colonne (una o due) dei valori di input
normalizzati, salvate precedentemente in x e - eventualmente - x2. Va co-
struita dunque la colonna di 1 mancante, mediante la funzione ones_like
di NumPy, che restituisce un'array di tutti valori 1, con dimensione e forma
uguale all'array x passato come parametro:
ones = np.ones_like(x)
In�ne per ottenere X è adoperata la funzione hstack, che permette di "im-
pilare orizzontalmente" gli array passati come argomenti e cioè unirli or-
dinatamente come colonne restituendo l'array bidimensionale desiderato.
Anche in questo caso un blocco condizionale gestisce il numero variabile di
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ingressi adoperati per il gradient descent:

if feature_x2 != "":
X = np.hstack((ones,x,x2))

else:
X = np.hstack((ones,x))

Per quanto riguarda invece theta, i parametri θk sono inizializzati ran-
domicamente per mezzo della funzione random.randn(dim) di NumPy che
in questo caso restituisce un array riga di valori casuali della dimensione
dim passata come argomento. Anche in questo caso è necessario un if sta-
tement per gestire la presenza della seconda variabile di input e per questo
motivo sono semplicemente aggiunte due istruzioni per l'inizializzazione dei
θk al blocco condizionale riportato precedentemente:
if feature_x2 != "":

X = np.hstack((ones,x,x2))
theta = np.random.randn(3)

else:
X = np.hstack((ones,x))
theta = np.random.randn(2)

A questo punto è calcolato e stampato15 il valore iniziale della Funzio-
ne di Costo mediante la funzione computeCost:
computeCost(X, y, theta)
Finalmente è eseguito l'algoritmo Gradient Descent invocando la funzione
gradientDescent precedentemente de�nita, che restituisce i valori �nali
dei θk i quali sono dunque assegnati alla variabile theta. Questi valori
rappresentano la funzione ipotesi hθ(x) migliore che l'algoritmo Gradient
Descent, parametrizzato dall'utente, è stato in grado di trovare. La funzio-
ne stampa ad ogni iterazione il valore della Funzione di Costo e al termine
di essa sono anche stampati i valori �nali dei θk nella �nestra dei messaggi
di Concerto:

print("Theta found by gradient descent: ")
print(theta[0],"\n", theta[1])
if feature_x2 != "":

print(theta[3]

In�ne è e�ettuato anche il calcolo degli indici d'errore MAE, MSE e RMSE
tramite la funzione computeErrors precedentemente de�nita, che conte-
stualmente li stampa nella �nestra dei messaggi di Concerto:
computeErrors(X, y, theta)

15L'istruzione di print fa parte della de�nizione della funzione computeCost.
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Complessivamente questa terza fase è stata così implementata:

print("Running Gradient Descent ...\n")
ones = np.ones_like(x)
if feature_x2 != "":

X = np.hstack((ones,x,x2))
theta = np.random.randn(3)

else:
X = np.hstack((ones,x))
theta = np.random.randn(2)

computeCost(X, y, theta)
theta = gradientDescent(X, y, theta, alpha, iterations)
print("Theta found by Gradient Descent: ")
print(theta[0],"\n", theta[1])
if feature_x2 != "":

print(theta[2]
computeErrors(X, y, theta)

4. Giunti a questo punto, sono disponibili tutti gli strumenti necessari a ef-
fettuare la predizione sul risultato da validare, a partire dai relativi
valori di input appartenenti alle variabili selezionate. Nello step 1, a se-
guito dell'immissione dei parametri da parte dell'utente, sono state create
le variabili x_case, x_case2 (condizionale) e y_case, alle quali sono sta-
ti assegnati i valori di input per la funzione ipotesi e quello di output da
confrontare con la predizione. Prima di sottoporre x_case e x_case2 alla
funzione hθ(x), è necessario normalizzare anche il loro valore con il meto-
do della Z-Score Normalization, ma stavolta non è necessario ricorrere alla
funzione featureNormalize come invece è stato fatto allo step 2 per tutti
gli elementi delle colonne degli input, estratte dal training set. La funzione
featureNormalize è infatti concepita per gestire un intero array NumPy,
di cui calcola media e deviazione standard, ma in questo caso per e�et-
tuare la normalizzazione di x_case e x_case2 è su�ciente disporre proprio
di questi valori, precedentemente calcolati dalla funzione e assegnati alle
variabili mean, std_dev, mean2 e std_dev2 in corrispondenza della norma-
lizzazione16. Di conseguenza per scalare per esempio x_case è su�ciente
che gli sia sottratto mean e che il risultato sia poi diviso per std_mean, otte-
nendo così x_case_norm. Naturalmente è necessario anche in questo caso
un blocco condizionale per l'eventuale presenza di una seconda variabile di
input per la predizione:

x_case_norm=(x_case-mean)/std_dev

16Questa operazione è e�ettuata allo step 2.
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if feature_x2 != "":
x_case_norm2=(x_case2-mean2)/std_dev2

Nel caso di due variabili di input, questi valori sono utilizzati per creare
un array riga di tre elementi, costituito da un 1 seguito appunto dai valori
di x_case_norm e x_case_norm2, costituendo in questo modo i coe�cienti
dell'equazione di hθ(x), che vanno dunque semplicemente moltiplicati per le
componenti dell'array theta per poi sommare in�ne i due risultati. Per ef-
fettuare questo prodotto scalare è su�ciente ricorrere alla funzione np.dot
per ottenere quindi il valore della predizione assegnato a prediction. Di-
versamente, per una sola variabile di input la procedura sarà analoga, ma
senza ricorrere a x_case_norm2:

if feature_x2 != "":
prediction = np.dot([1, x_case_norm, x_case_norm2],theta)

else:
prediction = np.dot([1, x_case_norm],theta)

Il valore predetto è stampato nella �nestra dei messaggi di Concerto e
da esso è ottenuta la di�erenza diff rispetto al risultato realmente cal-
colato y_case e analogamente è restituita anche la di�erenza percentuale
diff_pc rispetto a y_case. Entrambi questi parametri, fondamentali per
la valutazione della predizione e dunque per la validazione, sono mostrati
nella �nestra dei messaggi.
Si riporta dunque il codice complessivo di questo quarto step:

x_case_norm=(x_case-mean)/std_dev
if feature_x2 != "":

x_case_norm2=(x_case2-mean2)/std_dev2

if feature_x2 != "":
prediction = np.dot([1, x_case_norm, x_case_norm2],theta)

else:
prediction = np.dot([1, x_case_norm],theta)

if feature_x2 != "":
print("For",feature_x,"=",x_case,"and",feature_x2,"=",

x_case2,", the Predicted value of",feature_y,"is:",prediction)
else:

print("For",feature_x,"=",x_case,", Predicted value of",
feature_y, "is:", prediction)
print("The value calculated from Concerto Layout is:", y_case)
diff = y_case - prediction
diff_pc = (y_case - prediction) * 100 / prediction
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print("The difference between calculated and predicted values
is", diff, "wich corresponds to the", diff_pc, "%")

5. In questo ultimo step è necessario associare ai risultati della predizione,
già mostrati all'utente attraverso la �nestra dei messaggi di Concerto, una
rappresentazione gra�ca dell'andamento della funzione ipotesi ri-
spetto ai dati del training set. Per questo scopo risulta opportuno
sfruttare nuovamente le strutture che Concerto mette a disposizione, per-
ciò è stata realizzata una Window contenente un Diagram che mostra un
piano cartesiano di cui l'asse delle ascisse è associato ai dati della prima
variabile di input tratti dal training set, mentre sull'asse delle ordinate ci
sono i valori di output registrati nel training set e quelli restituiti dalla
funzione di predizione ottenuta con il Gradient Descent. Questa �nestra è
stata salvata nella solita directory lib con il nome AITV_Diagram.cdi
ed è richiamata e caricata mediante un altro script ausiliario in linguaggio
Concerto, analogamente a quanto visto al punto 1 per la �nestra Dialog.
Per poter tuttavia mostrare sul Diagram i dati del training set e della predi-
zione, è necessario che siano contenuti in un data �le caricato in Concerto
e a cui sia associato dunque un Alias. Allo stato attuale disponiamo del
DataFrame data ottenuto dal training set che, nel caso in cui l'utente abbia
scelto due variabili di input, è composto dalle colonne X e X2, contenenti i
valori delle due feature di input, e dalla colonna y, contenente i valori del
dataset risultato. É necessario dunque innanzitutto rinominare queste co-
lonne con il metodo data.rename (già adoperato nello step 2) per assegnare
a X e X2 i nomi delle variabili di input selezionate dall'utente, assegnati a
feature_x e feature_x2, mentre alla colonna y è associato il nome della
variabile relativa al risultato da validare assegnato a feature_y17. Questa
operazione è e�ettuata passando a data.rename un apposito dictionary che
indica le regole di traduzione delle label, assegnando il nuovo DataFrame
a data_pred. É riportato dunque di seguito il blocco condizionale per la
gestione di una o due variabili di input:

if feature_x2 != "":
data_pred = data.rename(columns="X": feature_x,

"X2": feature_x2, "y": feature_y)
else:

data_pred = data.rename(columns="X": feature_x,
"y": feature_y)

Successivamente è necessario associare a data_pred una terza colonna asso-
ciata ai valori predetti dall'ipotesi hθ(x) ottenuta con il Gradient Descent,

17Si ricordi che la variabile feature_y è stata precedentemente modi�cata in modo tale che
non riportasse anche il nome della chiave.
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mediante l'apposita sintassi. La colonna di valori è ottenuta mediante
np.dot che e�ettua il prodotto righe per colonne della matrice X, dotata
della colonna dei coe�cienti 1 di bias, per l'array theta:
data_pred["prediction"]=np.dot(X,np.transpose(theta))
In�ne il DataFrame data_pred è trascritto su un altro �le testuale all'in-
terno della cartella lib associato al tipo di prova eseguita (<nomeprova>_
TrainingSet_Pred.txt), che è sovrascritto ad ogni nuova predizione e
si attende il completamento dell'operazione con un'attesa di un secondo
(time.sleep(1)):

path=startPath+"lib\\"+test_type+"_TrainingSet_pred.txt"
data_pred.to_csv(path, sep="\t", index=False)
time.sleep(1)

A questo punto è possibile aprire il �le testuale così generato attraverso
il DataSource AdaMo_Files, assegnando come Alias TRAINPRED:

ts_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_TrainingSet_temp.txt")
ts_file.open("TRAINPRED")

In conclusione è lanciato lo script LoadAITVDiagram.csf, anch'esso po-
sizionato nella cartella lib, che si occupa di caricare e gestire la �nestra
Diagram.
conc.execute_concerto_script(startPath+
"lib\\LoadAITVDiagram.csf")
Complessivamente l'implementazione di quest'ultimo step di AITV.py è la
seguente:

ts_file=conc.data.select_file("TRAINPRED")
if ts_file is not None:

ts_file.close()
if feature_x2 != "":

data_pred = data.rename(columns="X": feature_x,
"X2": feature_x2, "y": feature_y)
else:

data_pred = data.rename(columns="X": feature_x,
"y": feature_y)
data_pred["prediction"]=np.dot(X,np.transpose(theta))
path=startPath+"lib\\"+
test_type+"_TrainingSet_Pred.txt"
data_pred.to_csv(path, sep="\t", index=False)
time.sleep(1)
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ts_file=conc.data.select_file("AdaMo_Files" +"\\lib\\"+
test_type+"_TrainingSet_Pred.txt")
ts_file.open("TRAINPRED")
conc.execute_concerto_script(startPath+"lib
LoadAITVDiagram.csf")

Si noti che le due righe aggiunte in cima a questa porzione dello script
hanno lo scopo di chiudere il �le con Alias TRAINPRED nel caso in cui sia
stato caricato nel corso di una precedente esecuzione di AITV, per garantire
una gestione pulita del layout. Per fare questo si prova a istanziare l'oggetto
ts_file mediante il metodo conc.data.select_file, per poi veri�carne
la validità nell'if statement che segue: solo nel caso in cui ts_file non sia
un None Object, sarà eseguito il metodo di chiusura del �le TRAINPRED.
Poniamo in�ne l'attenzione sullo script ausiliario LoadAITVDiagram.csf
e sulla �nestra AITV_Diagram.cdi che mostra la relazione tra input e
output reale e predetto. Lo script consiste semplicemente nelle seguenti
righe:

wnd=SelWin("AITV Prediction Diagram")
wnd.Close()
startPath = %CWF_AdaMoFilePath
startPath = StrReplaceAll(startPath,"\\","\")
LoadWindow(startPath+"lib\AITV_Diagram.cdi")
wnd=SelWin("AITV Prediction Diagram")
wnd.Activate()
diag=wnd.SelObj("AITVDiagram")
ydiag = diag.SelObj()[1]
feat_y = StrTokenize(%CWF_AITV_out,"'").y[2]
ydiag.yDSName = "TRAINPRED:D'"+feat_y
diag.xDSName = "TRAINPRED:D'"+%CWF_AITV_in

Ancora una volta si utilizza la User Variable %CWF_AdaMoFilePath per
ottenere il path del �le associato alla �nestra, rimpiazzando come sempre
i doppi \\ con un solo \ ed è successivamente caricato il Diagram con la
funzione LoadWindow. In�ne è creato l'oggetto wnd relativo alla �nestra con
la funzione SelWin adoperando il nome identi�cativo "AITV Prediction
Diagram" scelto per il Diagram, il quale è in�ne mostrato all'utente con il
metodo wnd.Activate(). Si noti che le prime due righe di questo script ser-
vono proprio a chiudere la stessa �nestra "AITV Prediction Diagram" nel
caso sia stata aperta nel corso di una precedente esecuzione di AITV, esat-
tamente come è stato fatto per il �le con Alias TRAINPRED. In�ne le ultime
cinque righe di questo script associano i corretti dataset del �le TRAINPRED
agli assi delle ascisse e delle ordinate: mentre TRAINPRED:D'prediction
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sarà sempre presente nei �le <NomeProva>_TrainingSet_Pred.txt, i da-
taset relativi alla feature di input e a quella di output del training set,
seguiranno la nomenclatura dei canali di provenienza, che naturalmente
non può essere associata staticamente al Diagram. Per questo motivo è
necessario istanziare l'oggetto diag della classe Object relativo all'oggetto
gra�co del Diagram ed il sotto-oggetto ydiag relativo alla scala di sinistra
(�g 3.20), utilizzando in questo caso l'omonimo metodo SelObj, associato
tuttavia alla classe Object a di�erenza di quanto visto precedentemente.
Utilizzando dunque diag.SelObj()[1] si ottiene il primo dei sotto-oggetti
di diag, che viene dunque assegnato a ydiag e in questo modo è possibi-
le assegnare il dataset desiderato all'asse sinistro delle ordinate, mediante
l'attributo ydiag.yDSName, secondo il classico costrutto. É dunque neces-
sario estrapolare dalla User Viariable %CWF_AITV_out solamente il nome
del dataset risultato sottraendo dunque dalla stringa che essa contiene il
nome della chiave: analogamente a quanto visto per il metodo split in
ambiente Python, è utilizzata la funzione StrTokenize(str,sep) della
libreria String, che permette di dividere la stringa str in più elementi de-
limitati dal separatore sep (nel nostro caso il singolo apice '), restituendo
una variabile-dataset, dalla quale è ottenuta la substring desiderata con
il metodo y[index]. La variabile feat_y, alla quale è dunque assegna-
ta la stringa a destra dell'apice, nel costrutto parziale KEY'DATASET che
contraddistingue %CWF_AITV_out, è in�ne adoperata per la de�nizione del
dataset associato alla feature di output di TRAINPRED, da assegnare al-
l'attributo ydiag.yDSName. Per associare invece la corretta variabile alle
ascisse, è su�ciente assegnare la stringa "TRAINPRED:D'"+%CWF_AITV_in
all'attributo diag.xDSName, associato in questo caso direttamente all'og-
getto Diagram diag.
A questo punto l'utente può consultare questi dataset con tutte le meto-
dologie di esplorazione che Concerto mette a disposizione, confrontando i
dati della predizione con i risultati del Gradient Descent precedentemente
stampati nella �nestra dei messaggi. In �g. 3.20 è mostrato un Diagram di
esempio con dati �ttizi sui quali è stato eseguito l'algoritmo di validazione
ricorrendo ad una sola variabile di input. Nel caso in cui sia stato selezio-
nato anche un secondo ingresso per la predizione, è lasciata all'utente la
libertà di manipolare questa �nestra per associare l'altra feature all'asse
delle ascisse o valutare diversamente la funzione di predizione ad esempio
con gra�ci 3D scatter o di tipo surface.

In conclusione è �nalmente possibile per l'utente adoperare le informazioni for-
nite da AITV per giudicare i risultati calcolati dalla post-elaborazione, determi-
nando in questo modo se tali valori possano essere considerati a�dabili e dun-
que validati. Qualora invece non sia soddisfatto della predizione e�ettuata da
AITV, è possibile lanciare nuovamente l'algoritmo parametrizzandolo in modo
più opportuno, per personalizzare al meglio il processo di validazione.
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Figura 3.20: Diagram per la valutazione della predizione di AITV.
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Capitolo 4

Caso di studio: Lambda Step

L'esposizione di un caso di studio è il metodo migliore per fornire un esempio
concreto del funzionamento della struttura descritta nel paragrafo precedente. É
stata scelta a tale scopo una tipologia di test frequentemente richiesta, che per-
mette di valutare un parametro fondamentale per descrivere lo stato attuale di
un catalizzatore. Il sistema aftertreatment costituisce infatti un componente
di grande interesse per le sperimentazioni condotte in sala prova, dal momento
che la sua qualità e lo stato in cui versa condizionano in modo determinante il
quantitativo di inquinanti emessi dallo scarico. Lo sviluppo di un motore e il
raggiungimento di una calibrazione ottimale della ECU, passano necessariamen-
te dalla scelta del sistema aftertreatment più adatto a garantire che, per tutta
la sua vita utile, le emissioni rilasciate in ambiente siano al di sotto dei limiti
della normativa vigente. Lo stato di un catalizzatore rappresenta dunque un
parametro fondamentale che bisogna valutare attraverso prove apposite, come
quella del Lambda Step, che serve a calcolare il valore di Oxygen Storage
Capacity (OSC), cioè la capacità del catalizzatore di immagazzinare ossigeno,
il quale fornisce un'indicazione dell'invecchiamento del componente.
Tra i diversi sensori di cui è dotata la linea di scarico, uno dei più importanti
è la sonda lambda, un misuratore di concentrazione di ossigeno che permette
di determinare se la miscela adoperata dal motore sia ricca1 (λ < 1) - cioè c'è
un eccesso di combustibile rispetto all'aria comburente - o se al contrario sia
povera2 (λ > 1). I propulsori a metano sviluppati nel nostro centro sono infatti
motori ad accensione comandata, caratterizzati da un funzionamento ideale in
corrispondenza di una miscela stechiometrica (λ = 1) e oscillazioni nel rapporto
aria su combustibile (AFR, Air to Fuel Ratio) - e dunque sul valore di lambda
- comportano una variazione sensibile di prestazioni, consumi ed emissioni. La
ECU gestisce un apposito controllore del titolo che permette di arricchire o
smagrire la miscela nei transitori che si veri�cano in condizioni di normale utiliz-

1Si dice anche "grassa".
2Si dice anche "magra".
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zo del motore, utilizzando come feedback il valore misurato dalla sonda lambda,
che tipicamente indica solo se una condizione di "ricco" o "magro", senza quan-
ti�care un valore e�ettivo. Questo tipo di sensore è chiamato lambda switch,
ma è utilizzata non di rado anche la sonda lambda lineare, un trasduttore più
so�sticato in grado di indicare appunto il valore e�ettivo di lambda.
Un metodo che si può adoperare per il calcolo dell'Oxygen Storage, consiste
nell'analisi di un evento transitorio da "ricco" a "magro", che vede dunque la
lambda passare da un valore minore di 1 a un valore maggiore di 1. La quan-
tità d'ossigeno in eccesso dovuta al repentino smagrimento della miscela, viene
immagazzinata per alcuni istanti nel catalizzatore, per poi essere rilasciata an-
che a valle. La massa d'ossigeno accumulata in questo intervallo di breakthrough
costituisce l'Oxygen Storage di cui il catalizzatore in prova è capace [6], che ha
l'e�etto bene�co di limitare le emissioni in condizioni di perturbazione del rap-
porto aria-combustibile: in questo modo durante una fase di combustione magra
l'ossigeno trattenuto limita le reazioni di produzione degli NOx a valle del cata-
lizzatore, mentre nelle fasi di combustione ricca facilita l'ossidazione di CO, CH4
e HC.
Nel prossimo paragrafo 4.1 sarà descritta la procedura di test del Lambda Step,
teorizzata per replicare questi fenomeni transitori in modo ripetibile e osservabile,
in modo tale da calcolare il valore di Oxygen Storage su diversi punti operativi.
Il paragrago 4.2 introduce brevevemente alcune delle tecniche utilizzate in fa-
se di post-elaborazione per il calcolo dell'OSC, mentre nell'ultimo paragrafo 4.3
sarà riportata la procedura di validazione mediante AITV, secondo le tecniche
illustrate nella sezione 3.4.2.

4.1 Algoritmo di test

La procedura di test relativa al Lambda Step è teorizzata e trascritta su una
Norma Interna FPT, un tipo di documento utilizzato per descrivere le atti-
vità di ricerca in tutti i loro aspetti, dalle speci�che per l'algoritmo di test alla
de�nizione dei controlli e calcoli per determinare correttezza ed esito delle prove.
Ponendo l'attenzione in particolare sull'algoritmo di test, è prescritto che si ripeta
un'interazione elementare su quindici punti operativi, determinati da tre
Velocità e cinque valori di carico, per ciascuno dei quali è dunque e�ettuata una
serie di transizioni da "ricco" a "magro" - e viceversa - permanendo in ciascuno
stato per un dato tempo. La procedura si snoda dunque in due loop annidati,
tramite i quali è �ssato un valore di Velocità impostata e per ciascuno dei cinque
valori di carico previsti, che si traducono dunque in cinque corrispondenti valori
di Coppia impostata, è e�ettuata l'interazione elementare.
L'automazione di sala prova ha dunque il compito di fare in modo che il mo-
tore permanga nel punto operativo demanded secondo le tecniche descritte nel
paragrafo 1.2.1, controllando Velocità e Coppia del motore in modo tale che
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Figura 4.1: Algoritmo di test del Lambda Step.
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si assestino intorno ai valori impostati per un dato tempo di stabilizzazione.
Per e�ettuare invece le transizioni che portano alternatamente da un eccesso
d'aria a un eccesso di combustibile nella miscela, è necessario trasmettere al-
l'application system, che gestisce la ECU, il valore di lambda obietti-
vo, ricordando che λ < 1 implica una combustione ricca e al contrario λ > 1
implica una combustione magra. Questo signi�ca che sarà inviato un mes-
saggio con protocollo ASAP3 dal sistema d'automazione a quello di controllo
ECU, imponendo istantaneamente uno dei due valori desiderati di lambda λrich
e λlean, riportati nella Norma, eseguendo rispettivamente uno step di lambda
obiettivo ricco e magro. Sono così e�ettuate tre transizioni con una sequenza
λrich → λlean → λrich → λlean → λrich → λlean, al termine delle quali è ripristi-
nato il corretto valore di lambda obiettivo stechiometrico λ = 1, seguito da un
tempo di stabilizzazione per ripristinare la condizione iniziale.
Analizziamo dunque in modo sintetico l'algoritmo del Lambda Step, rappresen-
tato dal �owchart riportato in �gura 4.1.

� Innanzitutto è necessaria una fase di inizializzazione che consiste nella di-
sabilitazione del controllore di titolo della ECU, centrando manual-
mente il valore stechiometrico. In questo modo è disattivato il control-
lo della dosatura ed è possibile imporre in open loop un rapporto aria-
combustibile, di cui si ha riscontro mediante la misura di una sonda lambda
lineare.

� É necessario porre in stato di sampling tutti gli strumenti di misura di-
sponibili, tra quelli richiesti per questo tipo di prova. In particolare è
mandatorio l'utilizzo di un banco analisi emissioni con doppio prelievo
simultaneo (a monte e a valle del catalizzatore), oltre che due sonde lambda
lineari (anche in questo caso una a monte e una a valle), che sono invece
costantemente in misura.

� É avviata un'acquisizione continua con frequenza a 10Hz (cioè un cam-
pione ogni 100 millisecondi), riferita alla chiave REG, nella quale sono con-
vogliati tutti i dati necessari alla post-elaborazione.

� É �ssato il prossimo valore di Velocità dei tre prescritti dalla norma e suc-
cessivamente il prossimo valore di carico dei cinque prescritti dalla norma ed
è calcolato il relativo valore di Coppia. Il motore è a questo punto control-
lato nel punto operativo, de�nito da tali valori di demand di Velocità e
Coppia, con una rampa a gradiente costante ed è posto in stabilizzazione
per un certo tempo.

� Viene eseguita una misura stazionaria che produce un nuovo punto
nella chiave V_IN per la validazione con AITV, nel quale sono contenuti
i valori mediati su trenta secondi delle seguenti quantity:
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� T_ATS associata alla Temperatura dell'ATS, misurata da una termo-
resistenza;

� qm_air associata alla portata massica dell'aria in ingresso al motore,
misurata da un apposito strumento;

� Conc_O2_EngineOut associata alla concentrazione di ossigeno nel gas
in uscita dal collettore di scarico e a monte dell'ATS, misurato dal
banco analisi emissioni.

� É e�ettuata l'iterazione elementare che prevede una serie di tre transizioni
ricco-magro intervallate dall'attesa di un certo tempo, seguita dal ripristino
del valore di lambda obiettivo stechiometrico pari a 1.

� É in�ne interrotto il campionamento degli strumenti adoperati, fermata
l'acquisizione continua su REG e ripristinato il controllore del titolo.

Questa procedura, sempli�cata in questa illustrazione perché contenga solo gli
elementi essenziali, è implementata nei due sistemi d'automazione AdaMo e
PUMA, secondo le rispettive tecniche di programmazione dei test introdotte
nei capitoli precedenti. Nel fare questo è naturalmente riprodotto rigidamente
l'algoritmo descritto e sono osservati tutti i dettami della Norma, in modo tale
da produrre un �le di risultati ugualmente strutturato e neutrale rispetto all'au-
tomazione di provenienza. Contestualmente è comunque assicurata una certa
parametrizzazione della procedura di test mediante la preliminare richiesta all'u-
tente di immissione di valori di input, relativi per esempio alla durata delle varie
attese o ai valori di lambda obiettivo ricco e magro.
In�ne per quanto riguarda le sale AdaMo, la cartella di risultati contenente i
�le prodotti da questa prova è caricata nell'apposita area di archiviazione sulla
risorsa condivisa nella rete aziendale, in modo tale che sia possibile convertirla in
formato ASAM mediante il FileConverter, che posizionerà il �le ATF restituito
nella directory target del Datasource relativo alla sala prova di provenien-
za.
Nell'ambito della descrizione di questo progetto, non risulta di particolare in-
teresse riportare ulteriori dettagli relativi all'implementazione del Lambda Step
sui sistemi d'automazione AdaMo e PUMA, ma è su�ciente la de�nizione del-
l'algoritmo precedentemente riportata, che fornisce le basi per la comprensione
dei prossimi paragra�.

4.2 Elaborazione dei risultati

I �le di risultati relativi alle prove di Lambda Step, prodotti dall'automazione di
sala prova e creati dal FileConverter nel caso speci�co delle sale AdaMo, sono resi
disponibili dai Datasource relativi alle sei sale prova che costituiscono il Database
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centralizzato descritto nel paragrafo 3.2.2. Dal Data Explorer di Concerto è dun-
que possibile accedere a questi dati e caricarli in un layout di post-elaborazione
opportunamente realizzato, che è in grado di calcolare il valore di Oxygen Sto-
rage per ciascuna iterazione elementare del Lambda Step, corrispondente ad un
determinato punto operativo. Nel paragrafo precedente è stato speci�cato inoltre
che per ognuna di queste serie di gradini di lambda è acquisito un record della
chiave V_IN, che contiene dunque i parametri preliminari della singola iterazione
che possono determinarne l'esito in termini di Oxygen Storage. Si intuisce dun-
que che per ciascun punto della chiave V_IN sarà calcolato un valore risultante
dalla post-elaborazione, garantendo così una corretta struttura dei dati per la
fase di validazione con AITV.
Il calcolo vero e proprio del valore di Oxygen Storage Capacity, in una
transizione da ricco a magro, è e�ettuato mediante la seguente formula:

OSCrich2lean[mg] =
106

3600
· χossigeno ·

∫ t1

t0

qmair · (1−
1

λ
) dt

dove

� χossigeno = 0.232 è la frazione molare di ossigeno rispetto all'aria;

� il tempo t0 corrisponde all'istante in cui il valore misurato dalla sonda
lambda lineare a monte dell'ATS supera il valore di 1;

� il tempo t1 corrisponde all'istante in cui il valore misurato dalla sonda
lambda lineare a valle dell'ATS supera il valore di 1;

� qmair è la portata massica (in kg/h) dell'aria in ingresso al motore, chia-
mata come la quantity adoperata nell'automazione di sala prova;

� λ è il valore misurato dalla sonda lambda lineare a monte dell'ATS.

Nella realizzazione delle �nestre che compongono il layout e delle formule che
elaborano i risultati �no a restituire un valore di Oxygen Storage, è dunque
necessario individuare l'intervallo temporale che intercorre tra t0 e t1 in cui ef-
fettuare il calcolo dell'integrale.
Naturalmente questo metodo rappresenta una delle tecniche che è possibile ado-
perare per calcolare l'OSC ed è possibile ricorrere ad altre metodologie nel caso
in cui non siano disponibili le grandezze necessarie al calcolo precedentemente
descritto. Se ad esempio non si disponesse di sonde lambda lineari, si potrebbe
utilizzare la concentrazione di ossigeno a monte e a valle dell'ATS, misurata dai
banchi analisi, adoperando una formula di calcolo leggermente diversa:

OSCrich2lean[mg] =
106

3600
· χossigeno · qmair ·

∫ t1

t0

(ConcO2monte
− ConcO2valle

) dt
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dove

� ConcO2monte
è la concentrazione (percentuale in volume) di ossigeno a monte

dell'ATS misurata dal banco analisi;

� ConcO2valle
è la concentrazione (percentuale in volume) di ossigeno a valle

dell'ATS misurata dal banco analisi;

� il tempo t0 corrisponde all'istante in cui ConcO2monte
supera il valore di

700ppm;

� il tempo t1 corrisponde all'istante in cui ConcO2valle
supera il valore di

700ppm.

Nel cosiderare la misura della concentrazione di ossigeno a monte e valle del
catalizzatore è necessario tenere in conto i ritardi di campionamento tipici del-
l'analizzatore all'interno del banco analisi emissioni, che comportano uno shift
signi�cativo nelle tracce delle relative quantity riportate nel recorder REG.
Ad ogni modo, il risultato dell'elaborazione è la formula OSC che corrisponde ad
un dataset contenente un punto per ogni iterazione di Lambda Step e�ettuata,
ciascuna delle quali può essere oggetto di validazione mediante l'algoritmo di
predizione di AITV. Anche in questo caso sono omessi ulteriori dettagli relati-
vi alla realizzazione del layout di Concerto post-elaborazione, che non risultano
utili nell'ottica della descrizione di questo progetto. Al contrario nel prossimo
paragrafo sarà approfondita la procedura di validazione di un risultato ottenuto
da un Lambda Step e�ettuato in sala prova, mediante gli strumenti descritti nel
capitolo 3.

4.3 Validazione con AITV

I dettagli forniti nei paragra� 4.1 e 4.2 aiutano a comprendere le caratteristiche
del caso di studio in esame, dal punto di vista della struttura dell'algoritmo di te-
st e dei calcoli necessari ad ottenere i valori di Oxygen Storage. Queste premesse
costituiscono la base fondamentale per l'analisi di un esempio vero e proprio di
esecuzione di un test di tipo Lambda Step, con conseguente elaborazione e valida-
zione dei risultati. Si intuisce che i valori numerici legati ai parametri preliminari
di temperatura dell'ATS, portata d'aria in ingresso al motore e concentrazione
d'ossigeno a monte del catalizzatore, così come i valori di Oxygen Storage risul-
tanti, costituiscono dati sensibili relativi a prodotti della mia azienda. Per questo
motivo sarà operata una normalizzazione di tutti questi dati, dividendo ogni va-
lore di ciascuna variabile per il massimo3 ottenuto relativamente alla grandezza
di riferimento.

3Ci si riferisce al valore massimo incontrato in questo caso di studio, cioè il valore più grande
tra quelli acquisiti e calcolati in LambdaStepTest e contenuti nel training set.

129



Figura 4.2: Selezione della folder di risultati LambdaStepTest per il
FileConverter.

Si considera quindi il caso di una prova di Lambda Step eseguita nella sala pro-
va CM4, coordinata dal sistema d'automazione AdaMo. Come è stato descritto
nei capitoli precedenti, le prove implementate su questo software generano una
folder come test result, che contiene i diversi �le di testo associati alle chiavi di
memorizzazione. In particolare a seguito del Lambda Step eseguito in questa
sala, è stata generata una directory chiamata LambdaStepTest, che contiene i
seguenti �le:

� V_IN.ASCII, associato alla chiave logpoint-based V_IN, contenente i dati
preliminari di ciascuna iterazione elementare del Lambda Step, da associare
ai relativi risultati calcolati in post-elaborazione;

� Eng.ASCII, associato alla chiave logpoint-based Eng, è il risultato di un'i-
struzione di SNAPLOG che memorizza i principali parametri caratteristici
della Unit Under Test, cioè il motore in prova;

� MD.ASCII, associato alla chiave logpoint-based MD, è il risultato di un'i-
struzione di SNAPLOG che memorizza alcune quantity relative a grandezze
che caratterizzano lo stato della sala prova all'inizio del test (pressione
atmosferica, temperatura dell'aria, etc.);

� REG.ASCII, associato alla chiave time-based REG, è l'acquisizione continua
totale4 della prova, nella quale sono memorizzate le tracce delle quantity
necessarie al calcolo dell'Oxygen Storage.

Questa folder è esportata dal �lesystem del PC di sala prova a quello della risorsa
d'archiviazione condivisa nella rete aziendale ed è posizionata nell'area associata

4La chiave REG sarà dunque composta di un solo measurement ID.
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Figura 4.3: Inserimento automatico nel Datasource CM4 del �le LambdaStepTe-
st.ATF generato dal FileConverter.

al Datasource AdaMo_Files, in modo tale che sia disponibile per il FileConver-
ter per la generazione del �le ATF. É dunque eseguito il Job Concerto relativo al
FileConverter (dal menu mostrato in �g. 3.9), selezionando la cartella di nostro
interesse come in �g. 4.2 ed è ottenuto il �le LambdaStepTest.ATF, posizio-
nato automaticamente nel Datasource CM4 associato all'omonima sala prova di
provenienza. É bene ricordare che il corretto funzionamento dell'algoritmo di
conversione si basa anche sul corretto assegnamento delle stringhe che identi�ca-
no la sala prova di provenienza e la tipologia di test e�ettuato, rispettivamente
alle quantity TestBench e Test_Type. Nel caso della nostra prova Lambda-
StepTest sarà assegnato, per ogni punto di V_IN, a TestBench la stringa "CM4"
e a Test_Type la stringa "LStep". In questo modo è possibile identi�care il �le
di mapping delle chiavi logpoint-based e time-based che caratterizzano la prova
di Lambda Step LStep_Mapping.txt, indispensabile per la conversione, e la di-
rectory in cui creare il �le ATF per permetterne l'accesso tramite il Datasource
della sala prova CM4.
La �g. 4.3 mostra il menu ad albero relativo al Data Environment AITV,
in cui si può navigare grazie al Data Explorer di Concerto, che presenta il �-
le LambdaStepTest.ATF creato dal FileConverter. Si può notare che sono
presenti tutte le chiavi corrispondenti ai �le testuali di partenza contenuti nella
directory di risultati, restituita dal sistema AdaMo di CM4 a seguito dell'ese-
cuzione della prova di Lambda Step, ma è presente inoltre la chiave di formule
FRM_OSC associata generalmente al Datasource di ogni sala prova, per rendere
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RESULT1: V_IN' FRM_OSC'
Logpt T_ATS qm_air Conc_O2_EngineOut OSC
- °C kg/h ppm mg
1 0.883754 0.947867 0.749664 0.475884
2 0.864146 0.817874 0.717362 0.486602
3 0.840336 0.668923 0.676985 0.486602
4 0.788515 0.494584 0.644684 0.534532
5 0.760504 0.346649 0.643338 0.62701
6 0.861345 0.920785 0.573351 0.46881
7 0.851541 0.744753 0.664872 0.470311
8 0.812325 0.590386 0.592194 0.486602
9 0.752101 0.446852 0.640646 0.49732
10 0.679272 0.297901 0.648721 0.482315
11 0.717087 0.514557 0.604307 0.398714
12 0.693277 0.417062 0.660834 0.407288
13 0.661064 0.330399 0.764468 0.390139
14 0.619048 0.238321 0.869448 0.300107
15 0.890756 0.912661 1 0.131083

Tabella 4.1: Associazione tra i valori d'ingresso di V_IN e il valore risultante
della formula OSC

disponibili i dataset di calcolo5 basati sui canali d'acquisizione contenuti nei �le.
All'interno di questa chiave sarà disponibile il dataset formula OSC, dotato dello
stesso numero di punti di ciascun dataset acquisito della chiave V_IN, che pre-
senterà il valore calcolato di Oxygen Storage per ciascuna iterazione elementare
del Lambda Step, a seguito del corretto impiego del layout di post-processing,
secondo le tecniche descritte nel paragrafo precedente. Il �le LambdaStepTe-
st.ATF può dunque essere caricato mediante il Datasource CM4 con l'automatica
associazione dell'Alias RESULT1, perché sia applicato ad esso il layout Concerto
in grado di assegnare al dataset RESULT1:FRM_OSC'OSC i valori calcolati dalla
relativa formula, a partire dalle tracce acquisite nella chiave RESULT1:REG. Nel-
la tabella 4.1 è riportata l'associazione, per ogni punto del LambdaStep, tra
i valori di input delle variabili RESULT1:V_IN'T_ATS, RESULT1:V_IN'qm_air e
RESULT1:V_IN'Conc_O2_EngineOut memorizzate in V_IN e il corrispondente va-
lore di Oxygen Storage calcolato dalla formula OSC della chiave FRM_OSC, a seguito
dell'elaborazione. Si ricorda che tali valori sono stati normalizzati dividendo, per
ogni grandezza, ciascun valore per il massimo ottenuto in questa prova e in tutte
quelle registrate nel training set.
Si nota inoltre che sono riportati tutti i quindici punti e�ettuati dalla prova
Lambda Step, generati dalla combinazione delle tre Velocità e dei cinque carichi

5Questo gruppo di formule contiene esclusivamente quelle necessarie all'elaborazione delle
prove di tipo Lambda Step.
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richiesti dalla Norma, che dimostrano dunque che tutte le iterazioni elementa-
ri sono state compiute con successo dall'automazione e di conseguenza è stato
possibile ottenere tutti i valori riportati di RESULT1:FRM_OSC'OSC. Per ciascuno
di essi è a questo punto possibile e�ettuare una predizione mediante AITV da
confrontare con il corrispondente valore calcolato di OSC, che ci permette di con-
siderare valido e a�dabile il risultato del test, con maggiore con�denza.
Il training set di riferimento per questa prova conta 105 campioni al momento
dell'esecuzione della prova LambdaStepTest ed è contenuto nel �le LStep_
TrainingSet.txt, collocato nella solita cartella lib6, contenente �le, script, �nestre
e altri elementi necessari al funzionamento del sistema realizzato. Tramite que-
sta collezione di campioni con l'associazione tra i valori dei tre dataset d'ingresso
T_ATS, qm_air e Conc_O2_EngineOut e il valore di uscita OSC, è pos-
sibile ottenere una buona predizione, mediante una o due variabili di input tra
le tre disponibili.
Si procede dunque con la validazione dei risultati ottenuti e a titolo d'esempio
si prova ad utilizzare AITV per predire il risultato del quarto punto e�et-
tuato, corrispondente alla prima Velocità di demand e al quarto set di carico.
Nalla tabella 4.1 si legge che per questa iterazione del Lambda Step:

� il valore iniziale (normalizzato) di T_ATS, cioè la temperatura dell'ATS, è
0.788515;

� il valore iniziale (normalizzato) di qm_air, cioè la portata d'aria in ingresso
al motore, è 0.494584;

� il valore iniziale (normalizzato) di Conc_O2_EngineOut, cioè la concentra-
zione volumetrica d'ossigeno a monte dell'ATS, è 0.644684;

� il valore corrispondente (normalizzato) di OSC, cioè la Oxygen Storage
Capacity calcolata dalla post-elaborazione, è 0.534532.

É dunque lanciato il Job relativo al Validatore AITV, che presenta la �nestra
di Dialog con cui sono esplicitati i parametri per la predizione, per la quale si
vuole utilizzare come feature di input la temperatura dell'ATS e la
portata dell'aria in ingresso al motore. Com'è mostrato in �g. 4.4, è allora
selezionata come prima variabile d'ingresso T_ATS ed è spuntato il CheckBox
per l'abilitazione anche della seconda variabile d'ingresso, la cui scelta ricade
su qm_air, mentre il dataset risultato di output, che costituisce l'oggetto della
validazione, è naturalmente FRM_OSC'OSC. Dal ListBox contenente tutti i punti
del dataset risultato, è dunque selezionato il quarto elemento e di conseguenza
saranno aggiornate le caselle di testo sulla sinistra con i valori di T_ATS e qm_air
relativi al quarto punto del Lambda Step e�ettuato. In�ne è impostato un Lear-
ning Rate pari a 0.3 e sono richieste 1500 iterazioni. A questo punto non

6Posizionata nel �lesystem della risorsa di archiviazione condivisa nella rete aziendale, in
particolare nell'area associata al Datasource AdaMo_Files.
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Figura 4.4: Selezione dei parametri per la predizione di AITV sul quarto
campione della prova LambdaStepTest.

Figura 4.5: Output testuale di AITV sulla �nestra dei messaggi di Concerto, nel
corso della validazione del quarto campione della prova LambdaStepTest.
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resta che confermare l'avvio dell'algoritmo di validazione con il Button START
VALIDATION e attendere che il software crei il modello predittivo con il Gra-
dient Descent secondo i parametri selezionati e lo applichi per la combinazione
di input selezionata.
Il risultato di questo processo consiste in primo luogo nella raccolta di informa-
zioni mostrate nella Message Window di Concerto, stampate a mano a mano che
l'algoritmo di AITV proseguiva nelle varie fasi descritte nel capitolo precedente.
L'output testuale, visibile anche in �g. 4.5 nella Message List, è il seguente:

Actual value of Cost Function J is:
0.022474659
Theta found by gradient descent:
0.446904773
0.216896743
-0.153384877
The Mean Absolute Error (MAE) calculated over the training set is:
0.1571501549741877
The Mean Squared Error (MSE) calculated over the training set is:
0.04494931806308552
The Root Mean Squared Error (RMSE) calculated over the training set is:
0.21201254223060842
For T_ATS = 0.788515 and qm_air = 0.494584 , Predicted value of OSC is:
0.5302887294085616
The value calculated from Concerto Layout is: 0.534532086144
The di�erence between calculated and predicted values is 0.004243356735438408
wich corresponds to the 0.8001974207846013 %

Si commentano di seguito i buoni risultati di questa predizione, andando per
ordine.

1. É riportato l'ultimo valore calcolato della funzione di costo che fa riferi-
mento alla J(Θ) associata all'ipotesi �nale hθ(x) ottenuta dal Gradient
Descent. Tale valore è approssimativamente pari a 0.02247 e possiamo
dire che potrebbe rappresentare il minimo assoluto della funzione di co-
sto, dal momento che abbiamo adoperato un Gradient Descent di tipo
Batch che assicura la convergenza dell'algoritmo, sebbene preveda un co-
sto computazionale maggiore (sono infatti di volta in volta adoperati tutti i
campioni del training set per l'aggiornamento dei θk, com'è stato descritto
nel paragrafo 3.4.1).

2. Sono trascritti i valori �nali dei θk, che identi�cano la funzione ipotesi �nale
hθ(x):

� θ0 = 0.4469 circa
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� θ1 = 0.2169 circa

� θ2 = −0.15338 circa

3. Sono calcolati i tre indici d'errore relativi alla Regressione Lineare a due
variabili realizzata dal Gradient Descent:

� MAE = 0.15715 circa

� MSE = 0.04495 circa

� RMSE = 0.21201 circa

Nel paragrafo 3.4.1 è stato spiegato che il MAE è un indicatore di semplice
interpretazione, molto robusto rispetto alla presenza di eventuali outlier
ma proprio per questo non tiene in conto importanti di�erenze tra il valore
predetto sul training case e quello e�ettivamente registrato. Al contrario
MSE e RMSE penalizzano maggiormente gli errori molto elevati e proprio
per questo motivo, dato che il valore di Oxygen Storage costituisce una
caratteristica cruciale dell'ATS per analizzarne l'impatto sulle emissioni, si
preferisce porre maggior risalto su questi ultimi due indicatori pur tenendo
in conto la loro suscettibilità alla presenza di outlier. I valori ottenuti
sono comunque buoni, ma indicano la presenza di alcuni training case sui
quali il modello non performa bene: il fatto che sia molto basso l'errore
ottenuto nella predizione del quarto elemento scelto per questo esempio in
particolare, non ci fa trascurare la necessità di doverlo adattare meglio ai
campioni del training set, magari lanciando un'altra predizione con AITV
nella quale sia scelta un'altra variabile di input che possa dimostrarsi più
idonea.

4. É �nalmente espresso il valore predetto per OSC a partire dai dati di T_ATS
= 0.788515 e qm_air = 0.494584, che è pari a circa 0.53029, a fronte di un
Oxygen Storage di circa 0.53453, calcolato invece dalla post-elaborazione.
La di�erenza in termini assoluti è approssimativamente 0.00424, pari dun-
que a circa lo 0.8002 %. Indubbiamente ottenere un errore al di sotto
dell'1% ci permette di dire che il modello ha e�ettuato un'otti-
ma predizione, grazie alla quale possiamo ritenere attendibile il risultato
restituito dai calcoli del post-processing.

In conclusione, il processo di predizione del quarto valore di Oxygen Storage
relativo alla prova LambdaStepTest ha prodotto un risultato molto buono, poiché
molto vicino a quello calcolato dalla formula FRM_OSC'OSC, addirittura a meno
dell'1%. Questo ci permette di considerare valido il risultato dell'elaborazione e
di conseguenza ci consente di ritenere correttamente realizzata tutta la procedura
di test:

� il sistema d'automazione, secondo l'algoritmo di prova implementato, ha
eseguito un buon controllo sul motore e ha coordinato adeguatamente
l'application system per il set del lambda obiettivo;
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Figura 4.6: Diagram Scatter 3D che mostra il modello ottenuto per la validazione
del quarto campione della prova LambdaStepTest.

� l'application system si è mostrato e�ciente nel corso della prova, eseguendo
la richiesta di lambda obiettivo e raccogliendo tutti i parametri da mandare
via ASAP3 al sistema d'automazione;

� tutti gli strumenti di misura e i sensori coinvolti nella prova per il calcolo di
OSC hanno trasmesso valori attendibili all'automazione, permanendo nello
stato di sampling senza errori;

� il formato dei dati si è dimostrato correttamente strutturato nel �le di ri-
sultati, che è completo e consistente, dal momento che il layout e le formule
di post-elaborazione, opportunamente realizzati, lo hanno processato senza
intoppi.

In �g. 4.5 è riportata una rappresentazione gra�ca del modello regressivo otte-
nuto in questo caso di studio, sotto forma di Diagram Scatter 3D, ottenuto da
un'elaborazione della window automaticamente restituita al termine dell'algorit-
mo di AITV, già illustrata nel paragrafo 3.4.2 (�g. 3.20). Nella parte inferiore
della �nestra è visibile la distribuzione dei valori di Oxygen Storage raccolti nel
training set, in funzione delle due variabili di ingresso scelte per la regressione,
che corrispondono alla temperatura dell'ATS e alla portata d'aria in ingresso al
motore. Il gra�co superiore invece mostra come varia la predizione in funzione
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degli stessi ingressi, rendendo evidente una buona risposta nel caso di campioni
che ricadono nella stessa zona di quello su cui è stata e�ettuata la validazione,
che presentava T_ATS = 0.788515 e qm_air = 0.494584.
A questo punto è possibile continuare il processo di validazione sui restanti pun-
ti della prova di Lambda Step e�ettuata, in modo analogo a quanto descritto
per il quarto campione di questo LambdaStepTest. In�ne possono essere aggiun-
ti tutti i dati acquisiti e calcolati nel training set tramite il Job del Parser,
che aggiunge al training set contenuto in LStep_TrainingSet.txt una nuova en-
try per ogni riga della tabella 4.1, composta dai valori di T_ATS, qm_air e
Conc_O2_EngineOut, associati ad ogni iterazione elementare e�ettuata in
LambdaSteptest, insieme al corrispondente valore di OSC calcolato. In questo
modo tali dati, precedentemente validati, contribuiranno a corroborare il processo
di validazione performato da AITV, a vantaggio di test futuri.
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Capitolo 5

Conclusioni e sviluppi futuri

Questo elaborato ambisce a costituire una stesura il più possibile completa di
tutti i dettagli del corposo lavoro, condotto nel corso di questi mesi, necessario
a realizzare l'architettura del sistema proposto. Nel primo capitolo sono stati
introdotti i concetti basilari legati alle attività di ricerca in sala prova motori,
alla programmazione degli algoritmi di test sui sistemi d'automazione, alle meto-
dologie di archiviazione e all'implementazione delle strutture di post-processing
dei dati, gettando così le fondamenta per la comprensione dell'architettura deli-
neata nel secondo capitolo e approfondita sugli aspetti più tecnici nel terzo. La
prima grande s�da di questo progetto consiste proprio nel tracciare una linea
di continuità tra tutte le discipline contemplate dall'attività di testing in sala
prova, che coinvolgono molteplici strumenti, competenze diversi�cate e un per-
sonale numeroso. Una seconda s�da riguarda invece l'integrazione di una nuova
tecnica, da porre a servizio di tutte le competenze già messe in gioco, per creare
un valore aggiunto che contribuisca ad accrescere la qualità dell'attività svolta:
l'Intelligenza Arti�ciale.
Si può intendere facilmente quanto sia stato impegnativo, ma al contempo pro�-
cuo, arrivare a creare il sistema descritto in questa tesi, che è in grado di contare
su un'implementazione coerente degli algoritmi di test e delle relative maschere
di elaborazione, su un meccanismo di standardizzazione del formato dei dati,
su una struttura d'archiviazione centralizzata e su una nuova procedura di vali-
dazione dei risultati mediante il Machine Learning. Sebbene la realizzazione di
quest'ultimo strumento costituisca il principale obiettivo di questo lavoro, pos-
siamo a�ermare che la struttura su cui si poggia il validatore di AITV riveste
un ruolo ugualmente importante nella presentazione dei risultati del progetto,
grazie all'e�cienza mostrata nel suo impiego sul caso di studio, che promette
di garantire in generale una gestione ancora più �uida della piattaforma di test
del nostro centro. Il capitolo 4 ha infatti descritto tutte le procedure e il �usso
di dati teorizzati e descritti in precedenza, dal punto di vista di una reale ap-
plicazione, di estremo interesse data la ricorrente necessità di e�ettuare prove di
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Lambda Step.
In questa sede, tuttavia, si vuole soprattutto discutere dell'esito del processo di
validazione, applicato ad uno dei risultati del test preso in esame, che ha mostrato
un'ottima risposta di AITV. La predizione e�ettuata sul valore sottopo-
sto a validazione si è discostata di meno dell'1% dal quello realmente
calcolato e questo permette sicuramente di considerare consistente l'esito della
prova e valida l'intera procedura di test, come è stato spiegato al termine del
paragrafo precedente. Non va però dimenticato che gli indici d'errore MAE,
MSE e RMSE, ottenuti dal modello predittivo in risposta allo stesso training
set su cui è stato allenato, testimoniano la presenza di alcuni training case per i
quali la funzione ipotesi �nale non si adatta al meglio. D'altro canto anche una
comparazione dei gra�ci tridimensionali, riportati in �g. 4.6, dimostra che la Re-
gressione Lineare a due variabili e�ettuata mediante il Gradient Descent risulta
più accurata in una zona circoscritta del piano de�nito dalle variabili di input
T_ATS e qm_air, nella quale la stima di OSC si avvicina molto al vero valore.
Da un lato eseguire nuovamente l'algoritmo di apprendimento, scegliendo altre
feature d'ingresso o impostando una diversa parametrizzazione di Learning Rate
e numero di iterazioni, potrebbe portare a un migliore adattamento al training
set, ma d'altronde possono veri�carsi circostanze in cui con ogni combinazione di
ingressi il modello non risponde adeguatamente né a nuovi campioni né a quelli
del training set. Sono state individuate alcune soluzioni più robuste per a�ron-
tare questo margine di miglioramento, che sono proposte di seguito insieme alle
altre principali prospettive di sviluppo futuro.

1. Potrebbe essere utile potenziando l'espressività del modello regressivo pro-
posto, aumentandone la complessità. In prima istanza l'implementazione di
una funzione ipotesi di grado maggiore di 1 permetterebbe di artico-
lare l'espressione di hθ(x) in modo tale da conferire alla super�cie descritta
dai valori predetti, in funzione delle due variabili di input, una forma più
simile a quella descritta dai valori reali. A questa soluzione potrebbe essere
abbinata in secondo luogo la possibilità di utilizzare più di due varia-
bili per la Regressione con Gradient Descent, per raggiungere un grado di
espressività del modello decisamente superiore. Ci sono tuttavia non poche
di�coltà legate a queste iniziative: se è vero che un'espressività insu�cien-
te può portare all'under�tting, che comporta uno scarso adattamento del
modello sia ai training case sia a nuovi campioni, è altrettanto vero che
un'espressività eccessiva può causare l'over�tting, che invece consiste in
un'estrema aderenza del modello al training set, compromettendo così la
sua e�cacia su nuovi dati. In merito alla ricerca di un trade-o� che costi-
tuisca il giusto mezzo tra questi due estremi, è necessario un procedimento
di over�tting addressing, imponendo ad esempio la riduzione del numero
di feature d'ingresso, tramite selezione manuale o algoritmica. La maggio-
re espressività del modello è tuttavia la ragione che ci spinge a cercare di
sfruttare nel modo più opportuno tutte le variabili di input a disposizione
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e, per non rinunciarvi, la teoria del Machine Learning suggerisce di ricor-
rere alla tecnica di regolarizzazione, che permette di smussare una curva
di predizione in over�tting rendendo più piccoli i θk delle feature polino-
miali. Per fare questo è necessario moltiplicare ogni termine della funzione
ipotesi hθ per una costante λ molto elevata, in modo tale che l'algoritmo
di Gradient Descent tenda a minimizzare i θk relativi alle feature di grado
maggiore. La funzione di costo apparrebbe così modi�cata:

J(Θ) =
1

2m
(
m∑
i=1

(hθ(x
(i))− y(i))2 + λ

n∑
k=1

θ2
k)

dove:

� m è il numero di istanze del training set;

�
1

2m
è il fattore di normalizzazione;

� (hθ(x
(i))− y(i)) è l'errore tra l'i-esimo valore stimato - a partire dall'i-

esimo valore di input x(i) - e l'i-esimo valore vero y(i) del training
set;

� n è il numero di feature d'ingresso e dunque n+ 1 è il numero dei θk;

� λ è il fattore di regolarizzazione.

Si noti che il fattore di regolarizzazione non è applicato a θ0, poiché è una
costante e dunque un termine di grado zero. Per questo motivo un valo-
re di λ troppo elevato potrebbe ricondurre il modello a una condizione di
under�tting, dal momento che tutti i θk sarebbero quasi nulli, ad eccezione
proprio di θ0, riconducendo la curva dell'ipotesi ad una sorta di retta. Al
contrario un valore troppo basso di λ non produrrebbe alcuno smussamen-
to, causando inevitabilmente l'over�tting.
Alla luce di quest'analisi, è immediato dedurre che sarebbe necessario un
studio molto approfondito della questione, soprattutto in virtù di tutte
le peculiarità che riguardano le grandezze misurate e calcolate nei test
motoristici di sala prova, le cui correlazioni sono molto spesso di natura
estremamente complessa. Solo un'indagine accurata, che combini diver-
se sperimentazioni alle premesse teoriche relative alle tecniche di Machine
Learning e al funzionamento dei motori a combustione interna, potreb-
be consentire di realizzare e padroneggiare al meglio modelli predittivi di
maggiore espressività. É perciò più opportuno fare esperienza del nuovo
strumento proposto in questa tesi così com'è stato concepito e sviluppato,
adoperandolo su un numero adeguato di test, in modo tale da esplorarne
i limiti e facilitare le scelte progettuali su una futura implementazione di
modelli più espressivi.
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2. Un altro passaggio evolutivo interessante a cui sottoporre lo strumento
di validazione AITV, consiste nel rendere AITV un Machine Learning
System a tutti gli e�etti, dotato cioè di ogni caratteristica e funziona-
lità necessaria a massimizzare la qualità dei modelli generati. Alcuni dei
fondamentali accorgimenti prescritti a tale scopo sono in realtà già sta-
te adottati in questo progetto, basti pensare alla normalizzazione delle
feature d'ingresso con il metodo Z-Score o alla procedura di selezione
delle feature demandata all'utente in quanto esperto del campo d'appli-
cazione o, ancora, alla valutazione dell'ipotesi per mezzo del calcolo degli
indici d'errore MAE, MSE e RMSE. Ci sono tuttavia almeno altri due
procedimenti che possono conferire maggiore completezza allo strumento
di predizione, i quali sono di seguito riportati come proposte per un futuro
sviluppo:

� Come in più occasioni è stato evidenziato in questa tesi, molto spesso
i dati memorizzati nel training set possono apparire "sporchi", poi-
ché a�etti dalla presenza di outlier, i quali possono compromette-
re le prestazioni del modello generato portando a predizioni errate
sulla base di un apprendimento errato, un fenomeno noto come GI-
GO (Garbage In, Garbage Out). Per arginare questo problema, è
possibile "ripulire" il set di campioni utilizzando una nuova rappre-
sentazione dei valori mediante il metodo Box Plot, con il quale il
range di ogni feature è suddiviso in quartili : si calcola la mediana
Q2 di tutti i valori, da cui si ottengono le altre mediane Q1 e Q3 dei
valori rispettivamente al di sotto e al di sopra di Q2. La di�erenza
IQR = Q3−Q1, detta interquartile, è usata per identi�care l'inter-
vallo [Q1 − 1.5 · IQR;Q3 + 1.5 · IQR] di valori attendibili e ogni dato
al di fuori di esso è ritenuto un outlier.
In questo progetto non è stato ritenuto opportuno adottare questa
tecnica di manipolazione dei dati, in primo luogo perché sono anco-
ra da valutare le potenzialità attuali di AITV sui dati attualmente
presenti nel training set, ma in secondo luogo è necessario uno studio
dell'impatto che questa procedura potrebbe avere sui valori salvati
delle grandezze di nostro interesse, dato che comporta il rischio di
eliminare dati comunque signi�cativi per i test e�ettuati.

� Attualmente la fase di valutazione del modello ottenuto da AITV
consiste nel semplice calcolo degli indici d'errore sullo stesso set di
dati d'addestramento, ma non consente di identi�care la migliore
ipotesi possibile, tra quelle ottenute dai diversi utilizzi del Machine
Learning System. Per fare questo, andrebbe diviso il set di dati di-
sponibili, attualmente dedicato per intero all'apprendimento diretto,
in tre subset :
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(a) Training Set, contenente il 60% dei campioni totali, è utilizzato
per l'addestramento del modello attraverso il Gradient Descent;

(b) Validation Set, contenente il 20% dei campioni totali, è utiliz-
zato per valutare su un nuovo insieme di dati ciascuna ipotesi
ottenuta, per mezzo dei tre indici d'errore MAE, MSE e RMSE;

(c) Test Set, contenente il 20% dei campioni totali, è utilizzato per
valutare l'ipotesi che meglio ha performato sul Validation Set.

In alternativa si potrebbe adoperare la tecnica di Cross Valida-
tion, che suggerisce suddividere il set di campioni disponibili sem-
plicemente in Training Set (80%) e Tesst Set (20%), con il metodo
dell'Holdout Splitting, avendo premura di dividere equamente le
occorrenze dei valori con la procedura di strati�cazione. Ciascun mo-
dello è dunque addestrato sul Training Set e valutato sul Test Set, per
permettere la scelta dell'ipotesi migliore.
La tecnica che però sarebbe più consigliata è quella della K-folds
Cross Validation, che per ciascuna ipotesi divide il dataset in K
parti uguali, ognuna delle quali è usata a turno come Test Set, mentre
le restanti K − 1 costituiscono il Training Set. Il processo è iterato in
modo tale che ogni osservazione è utilizzata sia per l'addestramento
che per la valutazione. Per permettere inoltre una migliore suddivi-
sione dei campioni, è possibile scegliere in modo casuale gli elementi
che compongono ciascun k-fold con il metodo del Random Subsam-
pling.
La dimensione attuale dei set di dati osservati per ogni tipologia di
test di sala prova è, tuttavia, troppo ridotta per consentire una sud-
divisione del genere, rendendo poco e�cace l'addestramento o poco
signi�cativa la valutazione. Nel momento in cui saranno accumulati
dati a su�cienza per mezzo del frequente uso di AITV e soprattutto
del Parser che immagazzina i nuovi campioni, si potrà strutturare una
procedura di ricerca del miglior modello possibile, per mezzo di succes-
sive parametrizzazioni dell'algoritmo, secondo le metodologie esposte
nel paragrafo 3.4.2.

3. L'attuale rappresentazione dei risultati dei test di sala prova, come gran-
dezze numeriche, vincola l'implementazione del Machine Learning System
all'utilizzo della Regressione Lineare, concepita per predire valori numerici
reali. Se si escogitassero nuove metodologie per esprimere gli esiti dei test,
in modo tale da ridurli a una suddivisione di valori discreti o classi, sa-
rebbe possibile ricorrere anche alle tecniche di Regressione Logistica o,
appunto, Classi�cazione. Si consideri ad esempio il caso di un ciclo omo-
logativo: il fatto che il quantitativo di CO2 emessa, espresso in g/kWh, sia
al di sotto o al di sopra del limite della normativa vigente potrebbe essere
ritenuto un risultato booleano e dunque discreto, che può valere True o
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False.
La prospettiva che si apre diventa ancora più interessante se si considera
che la Classi�cazione è il metodo su cui si basano le Reti Neurali, che
in sostanza replicano la Regressione Logistica su più livelli, permettendo
di esprimere in questo modo relazioni molto complesse tra le variabili
utilizzate come feature d'ingresso e il corrispondente valore di output da
predire.

Naturalmente tutte le iniziative riportate in precedenza costituiscono un lavoro
che può degnamente essere tema di un altro corposo progetto, al pari di que-
sta tesi. Nella maggior parte dei casi si tratta di prospettive che necessitano di
un'importante fase preliminare di raccolta di dati e informazioni, ma soprattutto
di esperienza del sistema realizzato in questa tesi.
In conclusione, i risultati raggiunti vanno considerati sicuramente positivi, dal
momento che questo lavoro ha consegnato una struttura solida e molto utile a
prescindere dalle nuove tecniche di validazione dei test adoperate. Inoltre la qua-
lità ed espressività dei modelli attualmente generabili con AITV rendono questo
strumento già abbastanza a�dabile e di conseguenza funzionale per le attivi-
tà di ricerca nel nostro centro, di cui costituisce da ora un'importante risorsa.
L'elemento di novità introdotto, gli ottimi risultati ottenuti sul caso di studio e
le interessanti prospettive suscitate costituiscono motivo di soddisfazione per il
lavoro compiuto.
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